Manual del Usuario

iM50/iM80

Monitor Para Pacientes Versión 1.0

Acerca de este manual

P/N: 01.54.455584-10Fecha de edición: Mayo de 2012© Copyright EDAN INSTRUMENTS, INC.2012. Todos los derechos reservados.

Declaración

Este manual lo ayudará a entender mejor el funcionamiento y mantenimiento del producto. Se recuerda que el producto debe utilizarse cumpliendo estrictamente las instrucciones que figuran en este manual. Si el usuario no cumple con las instrucciones de este manual, puede dar como resultado mal funcionamiento o accidentes por los cuales EDAN INSTRUMENTS, INC (en adelante, EDAN) no puede considerarse responsable.

EDAN tiene los derechos de reproducción de este manual. Sin el consentimiento escrito previo de EDAN, no se puede fotocopiar, reproducir ni traducir a otros idiomas el material incluido en este manual.

En éste manual se incluyen materiales protegidos por la ley de derechos de reproducción, incluyendo pero sin limitarse a información confidencial como información técnica e información para el paciente, el usuario no debe divulgar dicha información a ningún tercero irrelevante.

El usuario deberá entender que nada en este manual le otorga, expresa o implícitamente, cualquier derecho o licencia a utilizar cualquiera de las propiedades intelectuales de EDAN.

EDAN tiene el derecho de modificar, actualizar y publicar éste manual sin previo aviso.

Responsabilidad del fabricante

EDAN sólo se considera responsable por cualquier efecto sobre la seguridad, confiabilidad y desempeño del equipo si:

Las operaciones de montaje, extensiones, reajustes, modificaciones o reparaciones son realizadas por personas autorizadas por EDAN, y

La instalación eléctrica de la sala pertinente cumple con normas nacionales y

El instrumento se utiliza de acuerdo con las instrucciones de uso.

A solicitud, EDAN puede proporcionar, con compensación, los diagramas de circuito necesarios y cualquier otra información para ayudar al técnico calificado a mantener y reparar algunas piezas, que EDAN puede definir como piezas que pueden ser reparadas por el usuario.

Términos usados en este manual

Esta guía está diseñada para brindar conceptos clave sobre precauciones de seguridad.

ADVERTENCIA

Un rótulo de **ADVERTENCIA** informa acerca de determinadas acciones o situaciones que podrían resultar en lesiones o muerte.

PRECAUCIÓN

Un rótulo de **PRECAUCIÓN** informa acerca de acciones o situaciones que podrían dañar el equipo, generar datos imprecisos o invalidar un procedimiento.

NOTA

Una NOTA brinda información útil con respecto a una función o un procedimiento.

Tabla de contenido

Capítulo 1 Uso previsto y pautas de seguridad	1
1.1 Uso previsto	1
1.2 Pautas de seguridad	1
1.3 Explicación de los símbolos del monitor	4
Capítulo 2 Instalación	7
2.1 Inspección inicial	7
2.2 Instalación del monitor	7
2.2.1 Instalación del soporte de pared para el monitor	7
2.3 Conexión del cable de alimentación	7
2.4 Verificación del monitor	7
2.5 Verificación de la impresora	8
2.6 Ajuste de fecha y hora	8
2.7 Distribución del monitor	8
Capítulo 3 Operación básica	9
3.1 Presentación de las series iM50/iM80	9
3.1.1 Partes y teclas principales del iM50	9
3.1.2 Partes y teclas principales del iM80	12
3.1.3 Configuración del iM50/iM80	15
3.2 Operación y navegación	15
3.2.1 Uso de las teclas	17
3.3 Modo de operación	19
3.3.1 Modo Demo	19
3.3.2 Modo de espera	19
3.4 Cambio de la configuración del monitor	19
3.4.1 Ajuste del brillo de la pantalla	19
3.4.2 Cambio de fecha y hora	20
3.5 Ajuste del volumen	20
3.5.1 Ajuste del volumen de teclas	20
3.5.2 Ajuste del volumen de alarma	20
3.5.3 Ajuste del volumen de latidos	20
3.6 Verificación de la versión del monitor	20
3.7 Monitoreo en red	20
3.8 Configuración de idiomas	21
3.9 Comprensión de las pantallas	21
3.10 Calibración de las pantallas	21
3.11 Desactivación de la pantalla táctil	21
3.12 Uso del lector de códigos de barras	21
Capítulo 4 Alarmas	23
4.1 Categoría de alarmas	23

4.1.1 Alarmas fisiológicas	
4.1.2 Alarmas técnicas	23
4.1.3 Indicadores	23
4.2 Niveles de alarma	23
4.3 Control de la alarma	
4.3.1 Desactivar la alarma individual	
4.3.2 Pausa de la alarma sonora	25
4.3.3 Silenciamiento de alarmas	25
4.3.4 Control del volumen de alarma	
4.3.5 Configuración de límites de alarma	25
4.4 Bloqueo de alarmas	
4.5 Desactivar alarmas de sensor apagado	
4.6 Prueba de alarmas	
Capítulo 5 Información sobre alarmas	
5.1 Información sobre alarmas fisiológicas	
5.2 Información técnica sobre alarmas	
5.3 Indicadores	46
5.4 Rango ajustable de los límites de alarma	
Capítulo 6 Gestión de pacientes	53
6.1 Admisión de un paciente	53
6.1.1 Tipo de paciente y estado del marcapasos	54
6.2 Admisión Rápida	54
6.3 Edición de la información del paciente	54
6.4 Actualización de un paciente	54
6.5 Sistema de monitoreo central	55
Capítulo 7 Interfaz del usuario	56
7.1 Configuración de estilo de interfaz	56
7.2 Selección de parámetros de pantalla	56
7.3 Cambio de la posición de la señal	56
7.4 Cambio de la disposición de la interfaz	56
7.5 Visualización de pantalla de tendencias	56
7.6 Visualización de pantalla de oxígeno	56
7.7 Visualización de pantalla con letra grande	
7.8 Cambio de los parámetros y los colores de las ondas	57
7.9 Transferencia de una configuración	57
7.10 Configuración predeterminada	
Capítulo 8 Monitoreo de ECG	59
8.1 Descripción general	59
8.2 Información sobre seguridad de ECG	59
8.3 Visualización de ECG	60
8.3.1 Cambio del tamaño de la señal de ECG	

	8.3.2 Cambio de la configuración del filtro de ECG	61
	8.4 Uso de alarmas de ECG	61
	8.5 Selección del electrodo de cálculo	61
	8.6 Procedimiento de monitoreo	62
	8.6.1 Preparación	62
	8.6.2 Conexión de los cables de ECG	62
	8.7 Selección del tipo de derivación	62
	8.8 Instalación de los electrodos	62
	8.8.1 Colocación de electrodos para 3 derivaciones	63
	8.8.2 Colocación de electrodos para 7 derivaciones	64
	8.8.3 Colocación de electrodos para 12 derivaciones	65
	8.8.4 Colocación de electrodos de ECG recomendada para pacientes quirúrgicos	66
	8.9 Configuración del menú de ECG	67
	8.9.1 Configuración del origen de alarma	67
	8.9.2 Apagado inteligente de derivaciones	67
	8.9.3 Configuración del volumen de latidos	67
	8.9.4 Visualización del ECG	67
	8.9.5 Configuración del estado del marcapasos	68
	8.9.6 Calibración de ECG	68
	8.9.7 Configuración de la señal de ECG	68
	8.9.8 ECG de 12 derivaciones	69
	8.10 Monitoreo del segmento ST	69
	8.10.1 Configuración del análisis ST	69
	8.10.2 Pantalla ST	69
	8.10.3 Configuración de la alarma de análisis ST	69
	8.10.4 Acerca de los puntos de medición ST	70
	8.10.5 Ajuste de los puntos de medición ST e ISO	70
	8.11 Monitoreo de arritmia	70
	8.11.1 Análisis de arritmia	70
	8.11.2 Menú de análisis ARR	72
	8.12 Monitoreo de ECG de 12 derivaciones	73
	8.12.1 Función de diagnóstico	73
	8.12.2 Medición e interpretación	74
Ca	pítulo 9 Monitoreo de la respiración (RESP)	75
	9.1 Descripción general	75
	9.2 Información sobre seguridad de RESP	75
	9.3 Pantalla de Resp	76
	9.4 Colocación de electrodos para monitoreo de Resp	76
	9.5 Superposición cardíaca	76
	9.6 Expansión torácica	76
	9.7 Respiración abdominal	77

9.8 Selección del electrodo de Resp	77
9.9 Cambio de tipo de fijación	77
9.10 Cambio del tamaño de la señal de respiración	77
9.11 Uso de alarmas de Resp	77
9.12 Cambio del tiempo de apnea	77
Capítulo 10 Monitoreo de la saturación (SpO2)	78
10.1 Descripción general	78
10.2 Información sobre seguridad de SpO ₂	78
10.3 Medición de SpO ₂	79
10.4 Procedimiento de medición	79
10.5 Comprensión de alarmas de SpO ₂	80
10.6 Ajuste de límites de alarma	80
10.7 Configuración de SpO ₂ como origen del pulso	80
10.8 Configuración del tono de vibración	80
10.9 Configuración de sensibilidad	81
Capítulo 11 Monitoreo de la frecuencia de pulso (PR)	82
11.1 Descripción general	82
11.2 Configuración de la fuente de obtención del PR	82
11.3 Configuración del volumen PR	82
11.4 Uso de alarmas de pulso	82
11.5 Seleccionando la fuente de alarma activa	82
Capítulo 12 Monitoreo de la Presión no Invasiva (NIBP)	83
12.1 Descripción general	83
12.2 Información sobre seguridad de la NIBP	83
12.3 Introducción de la medición NIBP oscilométrica	84
12.4 Limitaciones de la medición	84
12.5 Métodos de medición	85
12.6 Procedimientos de medición	85
12.7 Indicaciones de operación	86
12.8 Corrección de la medición si la extremidad no se encuentra a la altura del corazón	87
12.9 Alarma de NIBP	87
12.10 Reinicio del módulo de NIBP	87
12.11 Calibración de la NIBP	87
12.12 Prueba de fuga	87
12.12.1 Procedimiento para prueba de fuga	88
Capítulo 13 Monitoreo de Temperatura (TEMP)	89
13.1 Descripción general	89
13.2 Información de seguridad sobre TEMP	89
13.3 Configuración del monitoreo de TEMP	89
13.4 Cálculo de la diferencia de temperatura	89
Capítulo 14 Monitoreo Rápido de Temperatura (Quick Temp)	90

14.1 Descripción general	90
14.2 Información de seguridad de Quick TEMP	
14.3 Procedimiento de medición	91
14.3.1 Medición de la temperatura oral	
14.3.2 Mediciones para temperaturas rectales	
14.3.3 Mediciones de temperaturas axilares	
14.4 Cambio de la unidad de temperatura	93
Capítulo 15 Monitoreo de Presión Invasiva (IBP)	94
15.1 Descripción general	94
15.2 Información de seguridad de IBP	94
15.3 Procedimientos de monitoreo	94
15.4 Seleccionar una presión para monitoreo	95
15.5 Puesta a cero del transductor de presión	95
15.6 Puesta a cero de la medición de presión	95
15.7 Solución de problemas en la puesta a cero de la presión (Tomando la presión Art	, por
ejemplo)	96
15.8 Calibración de presión de la IBP	96
15.9 Solución de problemas en la calibración de presión	98
15.10 Alarma de la IBP	98
Capítulo 16 Monitoreo de Dióxido de Carbono (CO2)	99
16.1 Descripción general	99
16.2 Información sobre seguridad de CO ₂	99
16.3 Procedimientos de monitoreo	100
16.3.1 Calibrando el cero del sensor	100
16.3.2 Módulo LoFlo de CO ₂	100
16.3.3 Módulo Capnostat 5 de CO ₂	102
16.4 Configuración de la señal de CO ₂	104
16.5 Configuración de las correcciones de CO ₂	104
16.6 Cambio de alarmas de CO ₂	105
16.7 Cambio de la alarma de apnea	
Capítulo 17 Monitoreo del Gasto Cardíaco (C.O.)	
17.1 Descripción general	106
17.2 Información sobre seguridad del gasto cardíaco (C.O.)	106
17.3 Procedimientos de monitoreo del gasto cardíaco (C.O.)	106
17.4 Ventana de medición del gasto cardíaco (C.O.)	108
17.5 Proceso de medición	109
17.6 Edición del gasto cardíaco (C.O.)	110
17.7 Monitorización de la temperatura sanguínea	110
17.8 Configuración de la constante computacional	111
17.9 Impresión de las mediciones de C.O	111
17.10 Seteo del modo de medición de la temperatura de inyección (Fuente IT)	

Capítulo 18 Monitoreo de Gases Anestésico (AG)	112
18.1 Descripción general	112
18.2 Información de seguridad	112
18.2.1 Información sobre seguridad del analizador ISA	112
18.2.2 Información de seguridad del módulo IRMA	114
18.3 Pasos de monitoreo	115
18.3.1 Pasos de monitoreo del analizador ISA	115
18.3.2 Pasos de monitoreo del módulo IRMA	117
18.4 Configuración del modo de trabajo	120
18.5 Configuración de alarmas	121
18.6 Configuración del tiempo de alarma de apnea	121
18.7 Estado de funcionamiento del analizador ISA	121
18.8 Estado de funcionamiento del módulo IRMA	121
18.9 Compensaciones de N ₂ O y O ₂	122
18.10 Efectos de la humedad	122
Capítulo 19 Congelar	123
19.1 Descripción general	123
19.2 Entrada/salida del estado Congelar	123
19.2.1 Ingresar al estado Congelar	123
19.2.2 Salir del estado Congelar	123
19.3 Informe de señales congeladas	124
Capítulo 20 Informe	125
20.1 Informe de gráficos de tendencia	125
20.1.1 Selección de gráficos de tendencia de parámetros específicos	125
20.1.2 Configuración de la resolución	125
20.1.3 Desplazamiento hacia la izquierda y hacia la derecha de la pantalla	126
20.1.4 Conmutación a la tabla de tendencias	126
20.1.5 Impresión	126
20.2 Informe de la tabla de tendencias	126
20.2.1 Configuración de la resolución	126
20.2.2 Desplazamiento en la pantalla	126
	100
20.2.3 Conmutación al gráfico de tendencias	120
20.2.3 Conmutación al gráfico de tendencias 20.2.4 Impresión	126 127
20.2.3 Conmutación al gráfico de tendencias20.2.4 Impresión20.3 Informe de mediciones de Presión no invasiva (NIBP)	
 20.2.3 Conmutación al gráfico de tendencias 20.2.4 Impresión 20.3 Informe de mediciones de Presión no invasiva (NIBP) 20.3.1 Desplazamiento en la pantalla 	126 127 127 127
 20.2.3 Conmutación al gráfico de tendencias	126 127 127 127 127
 20.2.3 Conmutación al gráfico de tendencias	126 127 127 127 127 127
 20.2.3 Conmutación al gráfico de tendencias	126 127 127 127 127 127 127
 20.2.3 Conmutación al gráfico de tendencias	126 127 127 127 127 127 127 127
 20.2.3 Conmutación al gráfico de tendencias	126 127 127 127 127 127 127 127 127

	20.5.1 Desplazamiento en la pantalla	
	20.6 Revisión del diagnóstico de 12 derivaciones	
	20.6.1 Desplazamiento en la pantalla	
	20.6.2 Borrar resultados de diagnóstico	
	20.6.3 Conmutación entre las señales y los resultados	
	20.6.4 Impresión	
Ca	pítulo 21 Cálculos y tabla de titulación	
	21.1 Cálculo de droga	
	21.1.1 Procedimientos de cálculo	
	21.1.2 Unidad de cálculo	
	21.2 Tabla de titulación	
Ca	pítulo 22 Impresión	
	22.1 Información general	
	22.2 Funcionamiento de la impresora	
	22.3 Tipo de impresión	
	22.4 Inicio y detención de la impresión	
	22.5 Operaciones de la impresora y mensajes de estado	
	22.5.1 Requisito del papel de impresión	
	22.5.2 Funcionamiento correcto	
	22.5.3 Falta de papel	
	22.5.4 Sustitución del papel	
	22.5.5 Eliminación de atascos de papel	
Ca	pítulo 23 Otras funciones	
	23.1 Llamado a enfermería	
Ca	pítulo 24 Uso de la batería	
	24.1 Indicador de carga de la batería	
	24.2 Estado de la batería en la pantalla principal	
	24.3 Comprobación del rendimiento de la batería	
	24.4 Reemplazo de la batería	139
	24.5 Reciclaje de la batería	140
	24.6 Mantenimiento de la batería	
Ca	pítulo 25 Cuidado y limpieza	141
	25.1 Generalidades	141
	25.2 Limpieza	141
	25.2.1 Limpieza del monitor	141
	25.2.2 Limpieza de los accesorios	
	25.3 Desinfección	
	25.4 Esterilización	144
Ca	pítulo 26 Mantenimiento	145
	26.1 Inspección	
	26.2 Tareas de mantenimiento y programa de pruebas	

Capítulo 27 Garantía y Servicio	147
27.1 Garantía	147
27.2 Información de contacto	147
Capítulo 28 Accesorios	
28.1 Accesorios de ECG	
28.2 Accesorios de SpO ₂	149
28.3 Accesorios de NIBP	
28.4 Accesorios de Temp	151
28.5 Accesorios de Monitoreo de Temperatura rápida	151
28.6 Accesorios de IBP	151
28.7 Accesorios de CO ₂	
28.8 Accesorios de C.O.	
28.9 Accesorios de AG	
28.10 Otros accesorios	
A Especificaciones del producto	
A.1 Clasificación	
A.2 Especificaciones físicas	
A.2.1 Tamaño y peso	
A.3 Especificaciones del entorno	
A.4 Pantalla	
A.5 Especificaciones de la batería	156
A.6 Impresora	
A.7 Informe	
A.8 ECG	
A.8.1 Monitoreo de 3/5 derivaciones	
A.8.2 Monitorización de 12 derivaciones	
A.9 RESP	
A.10 NIBP	167
A.10.1 NIBP para Módulo EDAN	
A.10.2 NIBP para modulo M3600	
A.11 SpO ₂	
A.11.1 SpO ₂ para Módulo EDAN	
A.11.2 SpO ₂ para Módulo Nellcor (opcional)	
A.12 TEMP	171
A.13 Quick TEMP	171
A.14 IBP	171
A.15 CO ₂	
A.16 C.O	
A.17 AG	175
A.17.1 Flujo lateral Phasein	
A.17.2 Flujo principal Phasein	

A.18 Red inalámbrica	180
B Información de CEM	181
B.1 Emisiones electromagnéticas: para todos los EQUIPOS y SISTEMAS	181
B.2 Inmunidad electromagnética: para todos los EQUIPOS y SISTEMAS	182
B.3 Inmunidad electromagnética: para EQUIPOS y SISTEMAS que no son de SOPORTE	3
VITAL	183
B.4 Distancias de separación recomendadas	185
C Configuración por defecto	186
C.1 Configuración predeterminada de información del paciente	186
C.2 Configuración de alarma predeterminada	186
C.3 Configuración de ECG predeterminada	186
C.4 RESP	188
C.5 SpO ₂	188
C.6 PR	188
C.7 NIBP	189
C.8 TEMP	189
C.9 Quick TEMP	189
С.10 ІВР	190
C.11 CO ₂	190
C.12 C.O.	191
C.13 AG	191
D Abreviaturas	193

Capítulo 1 Uso previsto y pautas de seguridad

1.1 Uso previsto

iM80:

El monitor controla parámetros como ECG (3 electrodos, 5 electrodos o 12 electrodos seleccionable), Respiración (RESP), Saturación de oxígeno arterial funcional (SpO₂), Presión sanguínea invasiva o no invasiva (IBP de 2 y 4 canales, NIBP), C.O. (Gasto cardiaco), Temperatura (TEMP doble), CO₂ espirado y Gas anestésico (AG). El monitor está equipado con alarmas que indican fallas del sistema (como electrodos sueltos o que no funcionan), parámetros fisiológicos que excedieron los límites establecidos por el operador, o ambas situaciones.

iM50:

El monitor controla parámetros como ECG (3 electrodos o 5 electrodos seleccionable), Respiración (RESP), Saturación de oxígeno arterial funcional (SpO₂), Presión sanguínea invasiva o no invasiva (IBP doble, NIBP), Temperatura (TEMP doble), CO₂ espirado y Temperatura Rápida (TEMP rápida). El monitor está equipado con alarmas que indican fallas del sistema (como electrodos sueltos o que no funcionan), parámetros fisiológicos que excedieron los límites establecidos por el operador, o ambas situaciones.

La detección de arritmia y el análisis del segmento ST no son aptos para pacientes neonatales.

1.2 Pautas de seguridad

ADVERTENCIA

- 1 Antes de utilizarlo, se debe verificar el equipo, el cable y los electrodos del paciente, etc. Se debe reemplazar cualquier pieza si presenta defectos evidentes o síntomas de desgaste que puedan afectar la seguridad del paciente o el desempeño del equipo.
- 2 El equipo técnico médico como este sistema de monitor/monitoreo sólo debe ser utilizado por personas que recibieron capacitación adecuada en el uso de dicho equipo y que son capaces de aplicarla correctamente.
- 3 PELIGRO DE EXPLOSIÓN-No utilice el dispositivo en un ambiente inflamable en el cual se puedan producir concentraciones de anestésicos inflamables u otros materiales.
- 4 PELIGRO DE ELECTROCUCIÓN-El tomacorriente debe ser un tomacorriente de tres hilos con conexión a tierra. Se debe utilizar un tomacorriente apto para uso hospitalario. Nunca adapte el enchufe de tres patas del monitor para que calce en un tomacorriente de dos ranuras.
- 5 Se debe tener suma precaución al aplicar equipos médicos eléctricos. Muchas partes del circuito humano/máquina son conductoras, como el paciente, los conectores, los electrodos y los transductores. Es muy importante que estas partes conductoras no entren en contacto con otras partes conductoras con conexión a tierra al conectarlas a la entrada del dispositivo del paciente aislado. Dicho contacto crearía un puente en la aislación del paciente y cancelaría la protección suministrada por la entrada aislada. En especial, no debe haber contacto entre el electrodo neutral y la conexión a tierra.

ADVERTENCIA

- 6 Los campos magnéticos y eléctricos pueden interferir con el desempeño adecuado del dispositivo. Por este motivo, asegúrese de que todos los dispositivos externos que funcionan alrededor del monitor cumplan con los requisitos EMC pertinentes. Los equipos de rayos X o dispositivos MRI son una posible fuente de interferencia dado que pueden emitir niveles más altos de radiación electromagnética.
- 7 Coloque todos los cables alejados del cuello del paciente para evitar una posible estrangulación.
- 8 Los dispositivos que se conectan con el monitor deben ser equipotenciales.
- 9 El equipo auxiliar conectado a las interfaces analógicas y digitales debe estar certificado según las normas IEC/EN respectivas (por ejemplo, IEC/EN 60950 para equipos de procesamiento de datos e IEC/EN 60601-1 para equipos médicos). Además, todas las configuraciones deben cumplir con la versión válida de la norma IEC/EN 60601-1-1. Por lo tanto, cualquier persona que conecta equipo adicional al conector de entrada o salida de señal para configurar un sistema médico, debe asegurarse de que cumpla con los requisitos de la versión válida de la norma IEC/EN60601-1-1 del sistema. Si tiene dudas, consulte a nuestro departamento de servicio técnico o a su distribuidor local.
- 10 Sólo se pueden utilizar el cable para el paciente y otros accesorios suministrados por EDAN. De lo contrario, no se puede garantizar el desempeño ni la protección contra electrocución y el paciente puede sufrir lesiones.
- 11 No confíe exclusivamente en el sistema de alarma audible para el monitoreo del paciente. El ajuste del volumen de la alarma a un nivel bajo o desactivado durante el monitoreo del paciente puede resultar en un peligro para el paciente. Recuerde que el método más confiable de monitoreo del paciente combina la atenta vigilancia personal con la operación correcta del equipo de monitoreo.
- 12 Al interconectarse con otro equipo, personal calificado de ingeniería biomédica debe realizar una prueba de pérdida de corriente antes de utilizarlo con pacientes.
- 13 Durante el monitoreo, si la fuente de alimentación está desactivada y no hay batería de reserva, el monitor se desactivará. Después de reconectar la fuente de alimentación, el usuario debe encender el monitor para realizar el monitoreo.
- 14 Manténgalo alejado del fuego. Desconecte el monitor inmediatamente después que se detecten pérdidas o mal olor.
- 15 Después de la desfibrilación, la visualización de la pantalla se recupera en 10 segundos si se utilizan los electrodos adecuados y se aplican según las instrucciones de los fabricantes.

ADVERTENCIA

- 16 El dispositivo y los accesorios se deben desechar según las disposiciones locales después de su vida útil. Alternativamente, se puede devolver al distribuidor o al fabricante para el reciclaje o desecho adecuados. Las baterías son residuos peligrosos. NO las deseche junto con los residuos domésticos. Al final de su vida útil, lleve las baterías a los puntos de recolección correspondientes para el reciclaje de baterías agotadas. Para obtener información más detallada sobre el reciclaje de este producto o batería, comuníquese con su Oficina cívica local, o la tienda en la que compró el producto.
- 17 Deseche el paquete de acuerdo con las disposiciones de control de residuos y manténgalo fuera del alcance de los niños.
- 18 Este equipo no está previsto para uso familiar.

PRECAUCIÓN

- 1 Interferencia electromagnética Asegúrese de que el entorno en el que se instala el monitor de paciente no esté sujeto a ninguna fuente de interferencia electromagnética fuerte, como transmisores de radio, teléfonos móviles, etc.
- 2 Mantenga limpio el ambiente. Evite vibraciones. Manténgalo alejado de sustancias corrosivas, áreas con polvo, temperaturas elevadas y ambientes húmedos.
- 3 No sumerja los transductores en líquido. Al utilizar soluciones, use trapos limpios para evitar verter líquidos directamente sobre el transductor.
- 4 No utilice autoclave o gas para esterilizar el monitor, la impresora o cualquier otro accesorio.
- 5 El dispositivo y los accesorios reutilizables pueden devolverse al fabricante para su reciclaje o desecho según corresponda, después de su vida útil.
- 6 Los dispositivos desechables están previstos para un sólo uso. No se los debe reutilizar dado que se podría distorsionar el desempeño o producirse contaminación.
- 7 Retire de inmediato del monitor la batería cuyo ciclo de vida útil haya finalizado.
- 8 Evite salpicaduras de líquido sobre el dispositivo. La temperatura de trabajo debe mantenerse entre 5°C y 40°C. La temperatura de transporte y almacenamiento debe mantenerse entre -20°C y 55°C.
- 9 Para garantizar la seguridad del paciente, use sólo piezas y accesorios fabricados o recomendados por EDAN.
- 10 La ley federal prohíbe que éste dispositivo sea vendido por o en nombre de un médico.

NOTA:

- 1 Ubique el dispositivo en una ubicación donde el operador pueda ver fácilmente la pantalla y acceder a los controles de operación.
- 2 El monitor sólo puede utilizarse en un paciente por vez.
- 3 Si el monitor se humedece o en caso de que se derrame líquido sobre el monitor, comuníquese con el personal de mantenimiento de EDAN.
- 4 Este monitor no es un dispositivo para tratamiento.
- 5 Las imágenes e interfaces de este manual deben utilizarse sólo como referencia.
- 6 El mantenimiento preventivo regular debe realizarse una vez por año. Usted es responsable de cualquier requerimiento específico de su país.

1.3 Explicación de los símbolos del monitor

ł	Este símbolo indica que el equipo es un equipo Tipo CF IEC/EN60601-1. La unidad que muestra este símbolo contiene una parte aplicada al paciente tipo F aislada (flotante) que brinda un alto grado de protección contra electrocución y resulta adecuada para utilizar durante la desfibrilación.
۱ ۸ ۲	Este símbolo indica que el instrumento es un equipo Tipo BF IEC/EN60601-1. La unidad que muestra este símbolo contiene una parte aplicada al paciente tipo F aislada (flotante) que brinda un alto grado de protección contra electrocución y resulta adecuada para utilizar durante la desfibrilación.
\triangle	Símbolo de "Precaución"
Å	Sistema de conexión a tierra equipotencial
\sim	Corriente alterna
(¢/@)	Interruptor de fuente de alimentación
SN	Número de serie
	Puerto de red

ţ ,	Conexión USB (Bus universal en serie)
\mathbf{x}	La alarma de audio está desactivada
	Medición de Presión no Invasiva (NIBP)
	Gráfico de tendencias
\mathbb{X}	Congelar
\sum	Imprimir
	Menú
⇔	Salida VGA, Monitor externo
¢	puerto RS-232
Л	Puerto de llamado a enfermera
	Puerto de tarjeta SD
Ŀ	Puerto de salida de señal
\ominus	Salida de señal

C € 0123	El símbolo indica que el dispositivo cumple con la Directiva del Consejo Europeo 93/42/EEC relativa a los dispositivos médicos.
EC REP	Representante autorizado en la Comunidad Europea
M	Fecha de fabricación
	Fabricante
P/N	Número de pieza
	Reciclar
X	Este símbolo indica que el dispositivo debe enviarse a agencias especiales según las disposiciones locales para la recolección individual una vez cumplido su período de vida útil.
(li	Consulte las instrucciones de uso
K	Posición bloqueada
<	Entrada de gas
□>	Salida de gas (evac.)
	ISA equipado para medir solamente CO _{2.}
CO ₂	ISA equipado para medir múltiples gases.

Capítulo 2 Instalación

NOTA:

- 1 Personal autorizado del hospital debe especificar los ajustes del monitor.
- 2 Para garantizar que el monitor funcione correctamente, por favor lea el manual de usuario y siga los pasos allí descriptos antes de utilizar el equipo.

2.1 Inspección inicial

Antes de abrirlo, verifique el embalaje y asegúrese de que no presente signos de mal manejo ni daños. Si la caja de envío está dañada, comuníquese con el transportista para obtener una compensación y embálela nuevamente.

Abra el embalaje con precaución y retire el monitor y los accesorios. Verifique que el contenido esté completo y que haya recibido la configuración y accesorios correctos.

Si desea hacer alguna consulta, comuníquese con su proveedor local.

2.2 Instalación del monitor

Si todas las situaciones son normales, coloque el monitor sobre una superficie plana, cuélguelo del riel de la cama o instálelo en la pared. Para saber cómo instalar el soporte de pared para el monitor, consulte el siguiente contenido.

2.2.1 Instalación del soporte de pared para el monitor

Para saber cómo instalar el soporte de pared para el monitor, consulte *Instrucciones de montaje del soporte de pared*.

2.3 Conexión del cable de alimentación

El procedimiento de conexión de la línea de alimentación de CA se detalla a continuación:

- 1 Asegúrese de que la fuente de alimentación de CA cumple con las siguientes especificaciones: 100V-240V~, 50Hz/60Hz.
- 2 Utilice el cable de alimentación provisto por el monitor. Enchufe la línea de alimentación a la interfaz de ENTRADA del monitor. Conecte el otro extremo del cable de alimentación a una salida de alimentación de tres hilos con conexión a tierra.

NOTA:

Conecte el cable de alimentación a un toma especial para uso hospitalario.

2.4 Verificación del monitor

Asegúrese de que los cables ni los accesorios de medición se encuentren dañados. Luego, encienda el monitor, verifique si el monitor inicia normalmente. Cuando encienda el monitor, asegúrese de que se enciendan las lámparas de la alarma y que se escuche el sonido de la alarma.

ADVERTENCIA

Si se detecta algún signo de daño, o el monitor muestra algún mensaje de error, no lo utilice en ningún paciente. Comuníquese con un ingeniero biomédico del hospital o con el Centro de atención al cliente de inmediato.

NOTA:

- 1 Verifique todas las funciones del monitor y asegúrese de que esté en buen estado.
- 2 Para garantizar el suministro eléctrico del monitor cuando se provean baterías recargables, cárguelas después luego utilizar el mismo.
- 3 El intervalo para volver a presionar el interruptor del botón POWER debe ser superior a 1 minuto.
- 4 Después de un funcionamiento continuo de 360 horas, reinicie el monitor para asegurarse de que el desempeño sea constante y tenga una prolongada vida útil.

2.5 Verificación de la impresora

Si su monitor está equipado con una impresora, abra la tapa de la misma para verificar que el papel esté correctamente instalado en la ranura. Si no hay papel, consulte el Capítulo *Imprimir* para obtener más información.

2.6 Ajuste de fecha y hora

Para ajustar la fecha y la hora:

- 1 Seleccione Menú > Conf Sist > Conf Hora Día.
- 2 Ajuste el formato de pantalla de fecha en base al hábito del usuario.
- 3 Ajuste el tiempo correcto de **Año**, **Mes**, **Día**, **Hora**, **Min** y **Seg** desde el menú emergente y presione **Salida**.

2.7 Distribución del monitor

Si entrega el monitor a usuarios finales directamente después de su configuración, asegúrese de que esté en modo de monitoreo.

Se debe capacitar adecuadamente a los usuarios para que utilicen el monitor antes de monitorear a un paciente. Para lograrlo, deben tener acceso y leer la siguiente documentación que se entrega junto con el monitor:

- Manual del usuario (éste manual) para instrucciones completas sobre operación.
- Tarjeta de referencia rápida para recordatorios rápidos durante el uso.

Capítulo 3 Operación básica

Este manual es para profesionales clínicos que utilizan monitores iM50 y iM80. A menos que se especifique lo contrario, la información aquí incluida es válida para todos los productos antes mencionados.

Este manual de usuario describe todas las funciones y opciones. Su monitor puede no tener todas estas funciones y opciones, dado que no todas están disponibles en todos los países. Su monitor presenta gran capacidad de configuración. Lo que usted observa en pantalla, cómo aparecen los menús y demás, depende de la forma en que haya sido personalizado para su hospital y puede no corresponder exactamente con lo que se observa aquí.

3.1 Presentación de las series iM50/iM80

Los monitores serie iM50/iM80 ofrecen una solución de monitoreo optimizada para entornos de atención quirúrgica, cardíaca, médica y neonatal. El monitor almacena datos en tendencias y eventos. Puede observar tendencias tabulares (signos vitales) y documentarlas en una computadora local.

3.1.1 Partes y teclas principales del iM50

El monitor de paciente iM50 tiene una pantalla plana color TFT de 8,4 pulgadas TOUCHSCREEN. Se pueden mostrar hasta 11 ondas en las pantallas iM50.

iM50 Vista frontal

1	Indicador de alarma — El color y la frecuencia de parpadeo varían según el nivel
	de alarma.

2	Interruptor — Cuando el monitor está conectado a la alimentación de CA,
	presione el interruptor para encenderlo. Luego, si lo mantiene presionado, puede apagar el monitor.
3	Indicador de batería, consulte la sección Indicador de batería para obtener más
	información.
4	Silencio — Pulse este botón para pausar la alarma. Se detienen todas las alarmas
	de audio y se muestran Silencio Temporal Ala **s y el símbolo 🖄 en el área de
	información. Si vuelve a pulsar este botón o finaliza el período de pausa, el
	sistema reanuda el modo de monitorización normal y desaparecen Silencio
	Temporal Ala **s y el icono.
	El símbolo 🖗 se muestra en el área de información. Si pulsa o mantiene pulsado este botón de nuevo, se reanuda la alarma.
	Para obtener más información sobre la opción Silencio Alar , consulte la sección "Desactivación de audio".
5	Iniciar/detener medición de NIBP — Presiónelo para comenzar a inflar el brazal y
	realizar la medición de NIBP. Luego, presiónelo nuevamente para detener la medición y desinflar el brazal.
6	Tendencia — Presiónelo para ingresar en la interfaz de resumen de tendencias.
7	Congelar — En modo normal, presiónelo para ingresar en estado congelar. Presiónelo nuevamente para descongelar el sistema.
8	Imprimir — presiónelo para iniciar la impresión en tiempo real. Presiónelo nuevamente para detener la impresión.
9	Menú — Presione el elemento para abrir el menú.
10	Perilla giratoria (en adelante, perilla) — El usuario puede girar la perilla en el
	sentido de las agujas del reloj o en el sentido contrario al de las agujas del reloj.
	arriba abajo izquierda o derecha para seleccionar el elemento deseado. Recuerde:
	al utilizar la perilla, gire este botón para resaltar y presiónelo para seleccionar el
	elemento.

iM50 Vista posterior

1	Ventilador
2	Interfaz de traba antirrobo
3	Traba de seguridad, se utiliza para evitar fallas en el cable de la fuente de alimentación.
4	Entrada de fuente de alimentación
5	Interfaz USB, este puerto se utiliza para conectar el dispositivo USB.
6	Interfaz VGA
7	Interfaz de red, este puerto se utiliza para conectar el sistema de monitoreo central a través del cable de red estándar.
8	Sincronización del desfibrilador / salida análoga. Cuando el usuario selecciona Salida Análoga, el monitor emite la forma de onda a través del puerto de salida auxiliar. Cuando el usuario selecciona Defibrilación , el monitor emite la señal de sincronización del desfibrilador a través del puerto de salida auxiliar.
9	Ranura para tarjeta SD
10	Parlante
11	Terminal de descarga a tierra equipotencial, si se utiliza el monitor u otra unidad procesadora en los exámenes internos del corazón, asegúrese de que la sala incluye un sistema de descarga a tierra equipotencial, en el cual el monitor y otra unidad procesadora están conectados por separado.

iM50 Vista lateral

1	Interfaz para conección de sensores
2	Tapa de la impresora
3	Tapa del compartimiento de la batería

3.1.2 Partes y teclas principales del iM80

El monitor de pacientes iM80 tiene una pantalla plana color TFT de 15 pulgadasTOUCHSCREEN. Se pueden mostrar hasta 13 ondas en las pantallas iM80.

iM80 Vista frontal

1	Indicador de alarma — cuando se activa una alarma, el indicador de alarma se iluminará o parpadeará. El color de la luz representa el nivel de la alarma.
2	Interruptor de la fuente de alimentación — cuando el monitor está conectado a la fuente de alimentación de CA, presione la tecla para encenderlo. Cuando el monitor está encendido, presione la tecla para apagarlo.
3	Indicador de batería, consulte la sección <i>Indicador de batería</i> para obtener más información.
4	 Silencio — Pulse este botón para pausar la alarma. Se detienen todas las alarmas de audio y se muestran Silencio Temporal Ala **s y el símbolo A en el área de información. Si vuelve a pulsar este botón o finaliza el período de pausa, el sistema reanuda el modo de monitorización normal y desaparecen Silencio Temporal Ala **s y el icono. El símbolo A se muestra en el área de información. Si pulsa o mantiene pulsado este botón de nuevo, se reanuda la alarma.
	"Desactivación de audio".
5	Iniciar / Detener medición NIBP — Presione este botón para inflar el brazal e iniciar la medición de la presión sanguínea. Durante la medición, presione el botón para detener la medición.
6	Tecla de tendencias — Presione este botón para ingresar a la interfaz de resumen de la tabla de tendencias.
7	Congelar/Descongelar — En modo normal, presione este botón para congelar todas las formas de onda en la pantalla. En el modo Congela , presione este botón para restaurar el monitoreo en tiempo real de las ondas.
8	Iniciar / Detener la impresión — Presione este botón para iniciar una impresión en tiempo real. Durante la impresión, presione este botón nuevamente para detener la misma.
9	Menú — Presione este botón para volver a la interfaz principal cuando no hay un menú abierto.
10	Perilla giratoria (en adelante, perilla) — El usuario puede girar la perilla en el sentido de las agujas del reloj o en el sentido contrario al de las agujas del reloj. Esta operación puede hacer que el recuadro de selección resaltado cambie hacia arriba, abajo, izquierda o derecha para seleccionar el elemento deseado. Recuerde: al utilizar la perilla, gire este botón para resaltarlo y presiónelo para seleccionar el elemento.

Manual de usuario del monitor de paciente

Operación básica

iM80 Vista lateral

1	Interfaz para conección de sensores
2	Soporte de fijación AG
3	Tapa de la impresora
4	Tapa del compartimiento de la batería

iM80 Vista posterior

1	Ranura para tarjeta SD
2	Puerto de llamado a la enfermera, este puerto está conectado al sistema de llamado. Cuando hay una alarma, el monitor emite una señal de llamado a la enfermera.
3	Sincronización del desfibrilador / salida análoga. Cuando el usuario selecciona Salida Análoga, el monitor emite la forma de onda a través del puerto de salida auxiliar. Cuando el usuario selecciona Defibrilación , el monitor emite la señal de sincronización del desfibrilador a través del puerto de salida auxiliar.
4	Salida VGA
5	Interfaz USB, este puerto se utiliza para conectar el dispositivo USB.
6	Interfaz RS232
7	Interfaz de red, este puerto se utiliza para conectar el sistema de monitoreo central a través del cable de red estándar.
8	Interfaz de traba antirrobo
9	Orificio de emisión de calor
10	Traba de seguridad, se utiliza para evitar fallas en el cable de la fuente de alimentación.
11	Terminal de conexión a tierra equipotencial, cuando se utiliza el monitor con otro equipo, el usuario debe conectar el monitor al equipo a través del electrodo para eliminar la diferencia de potencial de tierra entre diferentes dispositivos.
12	Parlante
13	Ventilador

3.1.3 Configuración del iM50/iM80

La configuración de iM50/iM80 se detalla a continuación:

Modelo	Tamaño (Longitud×Ancho×Altura)	Figura	Configuración de funciones
iM50	260 mm (L) × 140 mm (Ancho) × 205 mm (Alto)	Cuadrado	ECG, RESP, SpO ₂ , NIBP, IBP ,TEMP, Quick TEMP , CO ₂
iM80	370 mm (L) × 175 mm (Ancho) × 320 mm (Alto)	Cuadrado	ECG, RESP, SpO ₂ , NIBP, TEMP, IBP, C.O., CO ₂ , GAS,

3.2 Operación y navegación

Todo lo que necesita para operar el monitor está incluido en su pantalla. Casi todos los elementos en la pantalla son interactivos. Incluyen mediciones numéricas, formas de onda, teclas de pantalla, campos de información, campos de alarmas y menues. La configurabilidad del monitor significa que con frecuencia usted puede acceder al mismo elemento de diferentes formas. Por ejemplo, puede acceder a un elemento a través de su menú de configuración en pantalla, a través de una tecla fija o a través de una tecla rápida. El Manual de usuario siempre describe cómo acceder a elementos a través de un menú en pantalla. Puede utilizar la forma que le resulte más conveniente.

1	Departamento
2	Número de cama
3	Nombre del paciente
4	Tipo de paciente
5	Área de estado de la alarma
6	Alarma desactivada
7	Valor de medición
8	Menú
9	Desplácese hacia la derecha para visualizar más teclas rápidas
10	Fecha y hora
11	Símbolo de conexión a redes

12	Símbolo de estado de la batería
13	Símbolo de fuente de alimentación de CA
14	Área de teclas rápidas
15	Desplácese hacia la izquierda para visualizar más teclas rápidas
16	Tecla Silencio
17	Señal del parámetro fisiológico medido

3.2.1 Uso de las teclas

El monitor tiene cuatro tipos diferentes de teclas:

3.2.1.1 Teclas permanentes

Una tecla permanente es una tecla gráfica que permanece en pantalla todo el tiempo para brindarle acceso rápido a las funciones.

Menú – ingresa al menú de configuración principal.

Tecla silencio - silencia la alarma sonora para desactivar la alarma.

3.2.1.2 Teclas rápidas

Una tecla rápida es una tecla gráfica que se puede configurar, situada en la parte inferior de la pantalla principal. Le brinda acceso rápido a las funciones. La selección de teclas rápidas disponibles en su monitor depende de la configuración de su equipo y de las opciones adquiridas.

х.	Seleccione directamente este elemento en la pantalla para admitir rápidamente a un paciente
	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de revisión de gráfico de tendencias
	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de revisión de tabla de tendencias
	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de revisión de eventos de alarmas
	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de revisión de NIBP
$\mathcal{M}_{\mathcal{A}}$	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de revisión de análisis de arritmia (ARR)
	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de Pantalla de tendencias (Pant Tend)

₩ ⁶⁰ 99	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz estándar
* 8	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz Oxígeno CRG
AA	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz Letra Grande
Ø	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de habilitación de módulo
G	Seleccione directamente este elemento en la pantalla para cambiar el volumen de teclas
*	Seleccione directamente este elemento en la pantalla para ajustar el brillo de la pantalla
	Seleccione directamente este elemento en la pantalla para calibrar la pantalla táctil
→ ()←	Seleccione directamente este elemento en la pantalla para calibrar el cero del sensor IBP
⊿	Seleccione directamente este elemento en la pantalla para ingresar a la interfaz de configuración de alarmas
Q	Seleccione directamente este elemento en la pantalla para cambiar el volumen de latidos
	Seleccione directamente este elemento en la pantalla para ingresar al menú
×	Seleccione directamente este elemento en la pantalla para silenciar la alarma
\bigcirc	Seleccione directamente este elemento en la pantalla para ingresar a modo de espera.
•	Seleccione este elemento que se encuentra junto a la perilla para activar el funcionamiento de la pantalla táctil.

3.2.1.3 Teclas fijas

Una tecla fija es una tecla física en un dispositivo de monitoreo, como la tecla de impresión del panel frontal.

3.2.1.4 Teclas emergentes

Las teclas emergentes son teclas gráficas relacionadas con tareas que aparecen automáticamente en la pantalla cuando es necesario. Por ejemplo, la tecla emergente de confirmación aparece sólo cuando usted debe confirmar un cambio.

3.3 Modo de operación

3.3.1 Modo Demo

Para cambiar de modo de operación a modo demo, utilice el siguiente procedimiento:

- 1 Seleccione la tecla **Demo** directamente en la pantalla o
- 2 Seleccione Menú > Func Común, luego elija Mod Demo en la interfaz emergente e ingrese la contraseña 3045.

Después de ingresar en Mod Demo, el monitor realizará lo siguiente:

- No Almacenar datos de un paciente nuevo.
- Hacer una pausa para brindar todos los tipos de alarma.
- Hacer una pausa para transmitir datos del paciente a la central de monitoreo (CMS) y otros dispositivos de red.
- Hacer una pausa para almacenar los datos registrados actualmente y borrar la memoria usada para almacenar datos de registro e impresión.
- Datos reales: el valor de los parámetros medidos y la señal en tiempo real que se visualiza en pantalla surgen de datos analógicos predefinidos, no utiliza datos obtenidos de un paciente real.
- Historial de datos: el monitor almacenará los datos analógicos en tiempo real en modo demo, incluyendo datos de tendencias, información del paciente, evento de alarma, forma de onda y configuración.

Para salir del **Modo Demo**, seleccione **Menú > Func común > Modo Demo**.

ADVERTENCIA

Esto se realiza a los fines de demostración únicamente. No debe cambiar a modo Demo durante el monitoreo. En modo Demo, toda la información de tendencias almacenada se elimina de la memoria del monitor.

3.3.2 Modo de espera

Se puede utilizar el modo de espera cuando desea interrumpir temporalmente el monitoreo. Para ingresar al modo de espera, presione directamente la tecla rápida 🕐 en la pantalla. Para continuar el monitoreo, seleccione cualquier cosa en la pantalla o presione cualquier tecla.

3.4 Cambio de la configuración del monitor

3.4.1 Ajuste del brillo de la pantalla

Para cambiar el brillo de la pantalla:

- 1 Presione la tecla **Brillo** directamente en la pantalla o
- 2 Seleccione **Menú** > **Func Común** > **Brillo**, y seleccione la configuración adecuada para el brillo de pantalla. **10** es el más brillante, **1** es el menos brillante.

Su monitor puede configurarse con menos brillo en modo de espera y también para el transporte para conservar la carga de la batería.

3.4.2 Cambio de fecha y hora

Para cambiar la fecha y hora, consulte la sección Ajuste de fecha y hora.

ADVERTENCIA

Cambiar la fecha y hora influirá en el almacenamiento de los datos de tendencias.

3.5 Ajuste del volumen

3.5.1 Ajuste del volumen de teclas

El volumen de teclas es el volumen que usted oye cuando selecciona cualquier campo en la pantalla del monitor o cuando gira la perilla. Para ajustar el volumen de teclas:

- 1 Seleccione la tecla Vol Teclas directamente en la pantalla o
- 2 Seleccione **Menú** > **Conf Sistema** > **Vol Teclas**, luego seleccione la configuración adecuada para el volumen de teclas: **Cinco** es el más fuerte y **Cero** es el más silencioso.

3.5.2 Ajuste del volumen de alarma

Para cambiar el volumen de alarma:

- 1 Presione la tecla **Vol Alarma** directamente en la pantalla o
- 2 Seleccione **Menú** > **Conf Alarma** > **Vol Alarma**, y seleccione la configuración deseada de la interfaz emergente. Para información detallada, consulte la sección *Control del volumen de alarma*.

3.5.3 Ajuste del volumen de latidos

Para cambiar el volumen de latidos, presione la tecla **Vol Latido** directamente en la pantalla o consulte la sección *Configuración del volumen de latidos*.

3.6 Verificación de la versión del monitor

Para verificar la versión del monitor, seleccione $Men \dot{u} > Func Com \dot{u} > Acerca de$ para verificar la versión del software del monitor.

3.7 Monitoreo en red

Su monitor puede conectarse a la red alámbrica y a la red inalámbrica. Si el monitor está conectado a una red, el símbolo de red aparece en la pantalla.

NOTA:

Tenga en cuenta que algunas funciones basadas en red pueden estar limitadas para monitores de redes inalámbricas en comparación con aquellos de redes alámbricas.

3.8 Configuración de idiomas

Para cambiar el idioma:

- 1 Seleccione Menú > Mantenimiento > Manteni Usuario, luego ingrese la contraseña correcta ABC en la interfaz mostrada.
- 2 Seleccione la opción Lenguaje en la interfaz emergente para abrir la lista de idiomas.
- 3 Seleccione el idioma que desea de la lista. Para que el cambio resulte válido, reinicie el monitor.

3.9 Comprensión de las pantallas

Su monitor viene con un conjunto de pantallas preconfiguradas, optimizadas para escenarios de monitoreo comunes como Cirugía (OR) adulto o UTI/UCI (ICU) neonatal. Una pantalla define la selección general, tamaño y posición de las ondas, teclas numéricas y rápidas en la pantalla del monitor cuando usted enciende el monitor. Puede cambiar fácilmente entre las diferentes pantallas durante el monitoreo. Las pantallas NO afectan la configuración de la alarma, categoría del paciente y demás. Cuando usted cambia de una pantalla de diseño complejo a una de diseño más simple, algunas mediciones pueden no estar visibles pero igual continúan monitoreándose de fondo. Para información detallada, consulte el *Capítulo Interfaz del usuario*.

3.10 Calibración de las pantallas

Para calibrar la pantalla, consulte los siguientes pasos:

- Seleccione la tecla rápida Calibr Tact directamente en la pantalla o seleccione Menú > Mantenimiento > Manteni Usuario, luego ingrese la contraseña de mantenimiento ABC, y seleccione Calibr Pant Tactil en la interfaz emergente.
- 2 El símbolo aparece en la pantalla.
- 3 Haga clic en el punto central del símbolo
- 4 Después de la calibración satisfactoria, aparece el mensaje Calibr Pantalla Completada
- 5 en la pantalla. Luego seleccione **Salida** para finalizar la calibración.

3.11 Desactivación de la pantalla táctil

El usuario puede mantener presionada la tecla rápida **Menú** durante 3 segundos para desactivar el funcionamiento de la pantalla táctil. Si se desactiva la pantalla táctil, aparecerá el mensaje de

Pantalla bloqueada y el símbolo en la parte inferior de la pantalla. Para activar el funcionamiento de la pantalla táctil, gire la perilla para seleccionar el símbolo y presiónelo.

3.12 Uso del lector de códigos de barras

Para ingresar al menú de configuración de códigos de barras, seleccione **Menú** > **Mantenimiento** > **Mantenimiento del usuario**, luego de ingresar la contraseña necesaria **ABC**, seleccione **Otra Conf** > **Instalación C. barras**. Luego el usuario puede configurar el n.° de serie, el nombre, el apellido, etc.

Si Auto Config. está configurado en Enc, la información del paciente se actualiza automáticamente mediante un lector de códigos de barras. Si Auto Config. está configurado en Apag, el usuario debe actualizar manualmente la información del paciente.

Capítulo 4 Alarmas

La información sobre alarmas se aplica aquí a todas las mediciones. La información sobre alarmas específicas de la medición se analiza en las secciones de mediciones individuales.

ADVERTENCIA

Puede existir un peligro potencial si se utilizan diferentes alarmas predeterminadas para el mismo equipo o uno similar en una sola área, por ejemplo una unidad de cuidados intensivos o un quirófano cardíaco.

4.1 Categoría de alarmas

El monitor ofrece tres tipos de alarmas: alarmas fisiológicas, alarmas técnicas e indicadores.

4.1.1 Alarmas fisiológicas

Si uno o varios parámetros fisiológicos del paciente que se está monitoreando exceden el límite de alarma predefinido, por ejemplo: los valores de APNEA y SpO_2 exceden el límite de alarma, el monitor activará una alarma, y este tipo de alarma se denomina alarma fisiológica. Para obtener información detallada sobre alarmas, consulte la sección *información sobre alarmas fisiológicas*.

4.1.2 Alarmas técnicas

Si uno o varios estados técnicos del dispositivo están en estado anormal, como: electrodo desactivado o batería baja y demás, el monitor activará una alarma. Éste tipo de alarma se denomina alarma técnica. Para obtener información detallada sobre alarmas, consulte la sección *información sobre alarmas técnicas*.

4.1.3 Indicadores

El monitor posee indicaciones del proceso de monitoreo u otras funciones en forma de aviso de texto como por ejm: Reaprendizaje ARR y demás. Y este carácter se denomina indicador. Para obtener información detallada sobre alarmas, consulte la sección *Indicadores*.

4.2 Niveles de alarma

En términos de gravedad, los niveles de alarma del dispositivo se pueden clasificar en tres categorías: niveles de alarma altos, niveles de alarma medios y niveles de alarma bajos.

1 Niveles de alarma altos

Indican que el paciente se encuentra en una situación que representa una amenaza para su vida y requiere tratamiento de emergencia.

2 Niveles de alarma medios

Los signos vitales del paciente parecen anormales o el estado del sistema del dispositivo es anormal, lo que indica que se requiere una respuesta inmediata del operador.

3 Niveles de alarma bajos

Los signos vitales del paciente parecen anormales o el estado del sistema del dispositivo parece anormal, lo que indica que se requiere que el operador esté al tanto de la situación.

El sistema indica niveles de alarma altos/medios/bajos en las siguientes formas de audio diferentes:

Nivel de alarma	Indicador	Alarmas fisiológicas	Alarmas técnicas
Alta	El modo es "DO-DO-DOD O-DO, DO-DO-DOD O-DO", que se activa una vez cada 5 segundos.	El indicador de la alarma parpadea en color rojo con una frecuencia de 1,4 Hz ~ 2,8 Hz. El mensaje de la alarma parpadea con el fondo rojo y se visualiza el símbolo *** en el área de	El indicador de la alarma parpadea en color rojo. El mensaje de la alarma parpadea con el fondo rojo y se visualiza el símbolo *** en el área de alarmas.
Medio	El modo es "DO-DO-DO", que se activa una vez cada 25 segundos.	alarmas.El indicador de la alarmaparpadea en coloramarillo con unafrecuencia de0,4 Hz ~ 0,8 Hz. Elmensaje de la alarmaparpadea con el fondoamarillo y se visualiza elsímbolo ** en el área dealarmas.	Sin definición
Baja	El modo es "DO-", que se activa una vez cada 30 segundos.	El indicador de la alarma parpadea en color amarillo. El mensaje de la alarma parpadea con el fondo amarillo y se visualiza el símbolo * en el área de alarmas.	El indicador de la alarma parpadea en color azul. El mensaje de la alarma parpadea con el fondo amarillo y se visualiza el símbolo * en el área de alarmas.

El margen de presión de sonido de señales de alarma audibles va desde 45 dB a 85 dB.

4.3 Control de la alarma

4.3.1 Desactivar la alarma individual

Para desactivar la alarma, seleccione **Conf XX > Conf Alarma** (XX corresponde al nombre del parámetro) y configure Interr en Desac en la lista emergente. Si la alarma del parámetro está

desactivada, se visualiza el símbolo de Alarma desactivada 💹 en el área de parámetros.
4.3.2 Pausa de la alarma sonora

El monitor no emitirá una alarma audible cuando haya una alarma, durante la pausa de alarma de audio. La pantalla e indicador de alarma parpadearán indicando que existe una alarma. La parte superior del monitor muestra lo siguiente:

- 1 Símbolo de pausa de alarma audible 🔯.
- 2 El tiempo de pausa restante se visualiza en la pantalla en forma de texto y el fondo del mismo aparecerá en rojo.

El usuario puede configurar la pausa de la alarma de audio en 60 s, 120 s, o 180 s en base al requerimiento.

4.3.3 Silenciamiento de alarmas

Para silenciar la alarma, seleccione $Men \acute{u} > Mantenimiento > Manteni usuario > Conf$

Alarma, y configure la opción Silenc en Activado; luego, pulse la tecla en el panel frontal y manténgala pulsada durante más de tres segundos, o pulse la tecla rápida Silencio directamente en la pantalla.

Luego, el tono DO del recordatorio de la alarma sonará cada tres minutos.

4.3.4 Control del volumen de alarma

El monitor ofrece cinco niveles de volumen de alarma: **1**, **2**, **3**, **4** y **5**. Para ajustar el volumen de la alarma, consulte la sección *Ajuste del volumen de la alarma*.

4.3.5 Configuración de límites de alarma

ADVERTENCIA

- 1 Antes del monitoreo, asegúrese de que la configuración del límite de la alarma sea apropiada para el paciente.
- 2 La configuración de los límites de alarma en valores extremos puede causar que el sistema de alarma se desactive.

Para cambiar los límites de alarma de medición individual, tomando la alarma de HR, por ejemplo, consulte los siguientes pasos:

- 1 Seleccione el área Parámetro HR.
- 2 Seleccione **Conf HR** > **Conf Alarma**. Luego, configure el límite de alarma al valor deseado desde la interfaz emergente. Para saber cómo configurar el límite de alarma, consulte la siguiente figura:

4.4 Bloqueo de alarmas

Para configurar la función de bloqueo de alarmas, seleccione **Menú** > **Mantenimiento** > **Manteni Usuario** > **Conf Alarma** y configure **Pestillo Alar** de la lista desplegable. Si está configurado en **Enc**, cuando se produce una alarma, el monitor mostrará el mensaje de alarma del parámetro en el área de estado de la alarma. Si el parámetro regresa a un valor normal, la información de dicha alarma continuará mostrándose en el área de mensajes de alarmas y también el tiempo transcurrido desde el inicio de dicha alarma.

Si aparecen muchos parámetros como alarmas bloqueadas, los mensajes de alarma se visualizan en el área de mensajes de alarmas fisiológicas de a uno por vez. El intervalo es de dos segundos. Para deseleccionar el bloqueo de la alarma, configure **Pestillo Alar** en **Apag.** Cuando **Pestillo Alar** está **Apag**, la función bloqueo no es válida.

4.5 Desactivar alarmas de sensor apagado

Para configurar la alarma de sensor apagado, seleccione **Menú** > **Mantenimiento** > **Manteni usuario** e ingrese la contraseña necesaria **ABC**. Luego seleccione **Conf Alarma** y configure la **Alarma de sensor apagado** de la lista desplegable. Si está configurado en **Act** y se activa la alarma de sensor apagado, el usuario puede presionar la tecla Silencio en el panel frontal para desactivar la señal de alarma. Luego el indicador de alarma deja de parpadear y el monitor se encuentra en estado de silencio temporal de la alarma. Si el usuario vuelve a presionar la tecla de Silencio o finaliza el tiempo del silencio temporal, el monitor continúa con la alarma audible, y el monitor mostrará un mensaje de aviso de la alarma de sensor apagado.

4.6 Prueba de alarmas

Cuando enciende el monitor, se inicia una auto prueba. Debe verificar que se encienda el indicador de alarma y que se escuche un tono. Esto indica que los indicadores de alarma visibles y audibles funcionan correctamente. Para realizar más pruebas de alarmas de medición individuales, realice la medición en usted o utilice un simulador. Ajuste los límites de alarma y verifique que se observe un comportamiento adecuado de la alarma.

Capítulo 5 Información sobre alarmas

5.1 Información sobre alarmas fisiológicas

Mensaje	Causa	Nivel de alarma
ECG Muy Débil	No puede detectar la señal en el período designado.	Alto
ST-X Alto	El valor de medición ST está por encima del límite superior de alarma. (X significa I, II, III, aVR, aVL, aVF, V, V1, V2, V3, V4, V5 o V6)	Configurable por el usuario
ST-X Bajo	El valor de medición ST está por debajo del límite inferior de alarma.(X significa I, II, III, aVR, aVL, aVF, V, V1, V2, V3, V4, V5 o V6)	Configurable por el usuario
ASÍSTOLE	No se detectó QRS durante 4 segundos consecutivos	Configurable por el usuario
VFIB/VTAC	Taquicardia ventricular: La onda de fibrilación dura 4 segundos consecutivos; o la cantidad de latidos ventriculares continuos es mayor que el límite superior de eventos de latidos ventriculares (≥5). El intervalo RR es inferior a 600ms.	Configurable por el usuario
VT>2	$3 \le $ el número de eventos Ventriculares Prematuros (PVCs) < 5	Configurable por el usuario
PARES	2 PVCs consecutivos	Configurable por el usuario
RITMO BIGEMI Bigeminismo	Bigeminismo Ventricular	Configurable por el usuario
RITMO TRIGEM Trigeminismo	Trigeminismo Ventricular	Configurable por el usuario
R EN T	Un tipo de PVC con la condición de que HR<100, el intervalo R-R es inferior a 1/3 del intervalo promedio, seguido de una pausa compensatoria de 1,25X el promedio del intervalo R-R (la siguiente onda R avanza en la onda T anterior).	Configurable por el usuario
PVC	Contracciones Ventriculares Prematuras (PVCs) simples que no pertenecen al tipo de PVCs antes mencionado.	Configurable por el usuario
Taquicardia	5 complejos QRS consecutivos en donde el intervalo RR es inferior a 0,5s.	Configurable por el usuario
Bradicardia	5 complejos QRS consecutivos en donde el intervalo RR es mayor a 1,5s.	Configurable por el usuario

LATIDOS FALT LatidosPerdidos	Cuando HR es inferior a 100 latidos/min., no se detecta ritmo cardíaco durante el período 1,75 veces del promedio del intervalo RR; o Cuando HR es superior a 100 latidos/min., no se detecta latido durante 1 segundo.	Configurable el usuario	por
IRR Irregular	RITMO IRREGULAR: El paciente tiene un ritmo cardíaco irregular, verifique el estado del paciente, los electrodos, el cable paciente.	Configurable el usuario	por
PNC MPnoSensado	Sensado MARCAPASOS NO CAPTADO: Una vez que se fija el ritmo del marcapasos, el complejo QRS no puede detectarse durante 300ms.		
PNP MPsinRitmo	Configurable el usuario	por	
VBRADI BradiVent	BRADICARDIA VENTRICULAR: El paciente tiene un ritmo cardíaco irregular y su ritmo cardíaco promedio es inferior a 60 latidos/min. Verifique su estado, los electrodos y cable paciente.	Configurable el usuario	por
VENT	Configurable el usuario	por	
APNEA RESP	No se detecta frecuencia respiratoria (RESP) dentro del intervalo de tiempo específico.	Alto	
RR Alto	El valor medido de la RESP está por encima del límite superior de alarma.	Configurable el usuario	por
RR Bajo	El valor medido de la RESP está por debajo del límite inferior de alarma.	Configurable el usuario	por
HR Alto	El valor medido de la Frecuencia Cardíaca (HR) está por encima del límite superior de alarma.	Configurable el usuario	por
HR Bajo	El valor medido de la HR está por debajo del límite inferior de alarma.	Configurable el usuario	por
SpO ₂ Alto	El valor medido de la Saturación funcional arterial de Oxígeno (SpO ₂) está por encima del límite superior de alarma.	Configurable el usuario	por
SpO ₂ Bajo	El valor medido de la SpO ₂ está por debajo del límite inferior de alarma.	Configurable el usuario	por
SpO ₂ Sin pulso	La señal en el sitio de medición es demasiado débil, por lo tanto, el monitor no puede detectar la señal del pulso.	Alto	

PR Alto	El valor medido de la Frecuencia de Pulso (PR) está por encima del límite superior de alarma.	Configurable el usuario	por
PR Bajo	PR Bajo El valor medido de la PR está por debajo del límite inferior de alarma.		por
T1 ALTO	El valor medido de Tempearatura (T) en el canal 1 (T1) está por encima del límite superior de alarma.	Configurable el usuario	por
T1 BAJO	El valor medido en el canal T1 está por debajo del límite inferior de alarma.	Configurable el usuario	por
T2 ALTO	El valor medido en el canal T2 está por encima del límite superior de alarma.	Configurable el usuario	por
T2 BAJO	El valor medido en el canal T2 está por debajo del límite inferior de alarma.	Configurable el usuario	por
TD Alto	TD AltoEl valor medido de la Diferencia de Temperatura (TD= T1-T2) está por encima del límite superior de alarma.		por
TD Bajo	El valor medido en el canal TD está por debajo del límite inferior de alarma.	Configurable el usuario	por
TEMP ALTA	El valor medido de la Temperatura (TEMP) está por encima del límite superior de alarma.	Configurable el usuario	por
TEMP BAJAEl valor medido de la TEMP está por debajo del límite inferior de alarma.		Configurable el usuario	por
SIS Alto SISTÓLICA Alto	SIS AltoEl valor medido de la Presión Sistólica (SIS) noSISTÓLICA Altoinvasiva está por encima del límite superior de alarma.		por
SIS Bajo SISTÓLICA Bajo	El valor medido de la SIS está por debajo del límite inferior de alarma.	Configurable el usuario	por
DIAS ALTO DIASTÓLICA Alto	El valor medido de la presión Diastólica (DIAS) está por encima del límite superior de alarma.	Configurable el usuario	por
DIAS BAJO DIASTÓLICA Bajo	El valor medido de la DIAS está por debajo del límite inferior de alarma.	Configurable el usuario	por
MAP ALTO PAM ALTO	El valor medido de la Presión Arterial Media (MAP) está por encima del límite superior de alarma.	Configurable el usuario	por
MAP BAJO PAM BAJO	El valor medido de la MAP está por debajo del límite inferior de alarma.	Configurable el usuario	por
Art SIS Alto	El valor medido de la Presión Sistólica Arterial (Art SIS) está por encima del límite superior de alarma.	Configurable el usuario	por

Art SIS Bajo	El valor medido de la Art SIS está por debajo del límite inferior de alarma.	Configurable el usuario	por
Art DIA Alto	Art DIA Alto El valor medido de la Presión Diastólica Arterial (Art DIA) está por encima del límite superior de alarma.		por
Art DIA Bajo	El valor medido de la Art DIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
Art MAP Alto PAM Art Alto	El valor medido de la Presión Arterial Media (Art MAP) está por encima del límite superior de alarma.	Configurable el usuario	por
Art MAP Bajo PAM Art Bajo	El valor medido de la Art MAP está por debajo del límite inferior de alarma.	Configurable el usuario	por
PA SIS Alto AP SIS Alto	PA SIS Alto AP SIS Alto AP SIS Alto El valor medido de la Presión en Arteria Pulmonar durante la Sístole (PA SIS) está por encima del límite superior de alarma.		
PA SIS Bajo AP SIS Bajo	El valor medido de la PA SIS está por debajo del límite inferior de alarma.	Configurable el usuario	por
PA DIAS Alto AP DIAS Alto	El valor medido de la Presión en Arteria Pulmonar durante la Diastole (PA DIAS) está por encima del límite superior de alarma.	Configurable el usuario	por
PA DIAS Bajo AP DIAS Bajo	Configurable el usuario	por	
PA MEDIA Alto AP MEDIA Alto	El valor medido de la Presión Media en Arteria Pulmonar (PA MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
PA MEDIA Bajo AP MEDIA Bajo	El valor medido de la PA MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
PVC MEDIA Alto	El valor medido de la Presión Venosa Central Media (PVC MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
PVC MEDIA Bajo	El valor medido de la PVC MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
PIC MEDIA Alto	El valor medido de la Presión Intracraneal Media (PIC MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
PIC MEDIA Bajo	El valor medido de la PIC MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
PAI MEDIA Alto	El valor medido de la Presión Auricular Izquierda Media (PAI MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por

PAI MEDIA Bajo	El valor medido de la PAI MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
PAD MEDIA Alto	El valor medido de la Presión Auricular Derecha Media (PAD MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
PAD MEDIA Bajo	El valor medido de la PAD MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
P1 SIS Alto	El valor medido de la Presión Sistóilica Invasiva en el canal 1 (P1 SIS) está por encima del límite superior de alarma.	Configurable el usuario	por
P1 SIS Bajo	El valor medido de la P1 SIS está por debajo del límite inferior de alarma.	Configurable el usuario	por
P1 DIA Alto	El valor medido de la Presión Diastóilica Invasiva en el canal 1 (P1 DIA) está por encima del límite superior de alarma.	Configurable el usuario	por
P1 DIA Bajo	El valor medido de la P1 DIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
P1 MEDIA Alto	El valor medido de la Presión Invasiva Media en el canal 1 (P1 MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
P1 MEDIA Bajo	El valor medido de la P1 MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
P2 SIS Alto	El valor medido de la Presión Sistóilica Invasiva en el canal 2 (P2 SIS) está por encima del límite superior de alarma.	Configurable el usuario	por
P2 SIS Bajo	El valor medido de la P2 SIS está por debajo del límite inferior de alarma.	Configurable el usuario	por
P2 DIA Alto	El valor medido de la Presión Diastóilica Invasiva en el canal 2 (P2 DIA) está por encima del límite superior de alarma.	Configurable el usuario	por
P2 DIA Bajo	El valor medido de la P2 DIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
P2 MEDIA Alto	El valor medido de la Presión Invasiva Media en el canal 2 (P2 MEDIA) está por encima del límite superior de alarma.	Configurable el usuario	por
P2 MEDIA Bajo	El valor medido de la P2 MEDIA está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtCO ₂ ALTO	El valor medido de la Presión de CO_2 al final de la Espiración (Et CO_2 ; End tidal CO_2) está por encima del límite superior de alarma.	Configurable el usuario	por

EtCO ₂ BAJO	El valor medido de la EtCO ₂ está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiCO ₂ ALTO InsCO ₂ ALTO	El valor medido de la Presión de CO ₂ inspirado (FiCO ₂ ; Fractional Concetration of Inspired CO ₂) (InsCO ₂) está por encima de los límites de alarma.	Configurable el usuario	por
APNEA CO ₂	En un intervalo de tiempo específico, no se pueden detectar respiraciones RESP utilizando el módulo CO ₂ .	Alto	
AWRR ALTO	El valor medido de la Frecuencia Respiratoria en Vías Aéreas (AwRR) está por encima del límite superior de alarma.	Configurable el usuario	por
AWRR BAJO	El valor medido de la AwRR está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtO ₂ ALTO	El valor medido de la Presión de O_2 al final de la Espiración (EtO ₂ ; End tidal O_2) está por encima del límite superior de alarma.	Configurable el usuario	por
FiO ₂ BAJO	El valor medido de la Fracción Inspirada de O_2 (Fi O_2) está por debajo de los límites de alarma inferior.	Configurable el usuario	por
EtN ₂ O ALTO	El valor medido de la Presión de N_2O al Final de la Espiración (Et N_2O) está por encima del límite superior de alarma.	Configurable el usuario	por
FiN ₂ O Bajo	El valor medido de la Fracción Inspirada de N_2O (Fi N_2O) está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtHAL Alto	El valor medido de la Presión de Halotno al Final de la Espiración (EtHAL) está por encima del límite superior de alarma.	Configurable el usuario	por
EtHAL Bajo	El valor medido de la EtHAL está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiHAL Alto	El valor medido de la Fracción Inspirada de Halotano (FiHAL) está por encima del límite superior de alarma.	Configurable el usuario	por
FiHAL Bajo	El valor medido de la FiHAL está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtENF Alto	El valor medido de la Presión de Enflurano al Final de la Espiración (EtENF) está por encima del límite superior de alarma.	Configurable el usuario	por
EtENF Bajo	El valor medido de la EtENF está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiENF Alto	El valor medido de la Fracción Inspirada de Enflurano (FiENF) está por encima del límite superior de alarma.	Configurable el usuario	por

FiENF Bajo	El valor medido de la FiENF está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtISO Alto	El valor medido de la Presión de Isoflurano al Final de la Espiración (EtISO) está por encima del límite superior de alarma.	Configurable el usuario	por
EtISO Bajo	El valor medido de la EtISO está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiISO Alto	El valor medido de la Fracción Inspirada de Isoflurano (FiISO) está por encima del límite superior de alarma.	Configurable el usuario	por
FiISO Bajo	El valor medido de la FiISO está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtSEV Alto	El valor medido de la Presión de Sevorane al Final de la Espiración (EtSEV) está por encima del límite superior de alarma.	Configurable el usuario	por
EtSEV Bajo	El valor medido de la EtSEV está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiSEV Alto	El valor medido de la Fracción Inspirada de Sevorane (FiSEV) está por encima del límite superior de alarma.	Configurable el usuario	por
FiSEV Bajo	El valor medido de la FiSEV está por debajo del límite inferior de alarma.	Configurable el usuario	por
EtDES Alto	El medido de la Presión de Desflurano al Final de la Espiración (EtDES) está por encima del límite superior de alarma.	Configurable el usuario	por
EtDES Bajo	El valor medido de la EtDES está por debajo del límite inferior de alarma.	Configurable el usuario	por
FiDES Alto	El valor medido de la Fracción Inspirada de Desflurano (FiDES) está por encima del límite superior de alarma.	Configurable el usuario	por
FiDES Bajo	El valor medido de la FiDES está por debajo del límite inferior de alarma.	Configurable el usuario	por
AG FiO ₂ Bajo	El valor medido de la FiO_2 por el módulo de Agentes Anestésicos (AG FiO_2) es demasiado bajo.	Alto	
APNEA AG	En un intervalo de tiempo específico, no se puede detectar RESP usando el módulo AG.	Alto	
TB Alto TS Alto	El valor medido de la Temperatua Sanguínea (TB) está por encima de la alarma superior.	Configurable el usuario	por
TB Bajo TS Bajo	El valor medido de la TB está por debajo de la alarma inferior.	Configurable el usuario	por

5.2 Información técnica sobre alarmas

NOTA:

La información sobre la alarma de ECG que se detalla en la siguiente tabla describe los nombres de los electrodos que se corresponden con la codificación empleada en Estados Unidos por la American Heart Association (AHA). Para los nombres de los electrodos correspondientes a los descriptos en Europa por la International Electrotechnical Commission (IEC), consulte la sección *Instalación de electrodos*.

Mensaje	Causa	Nivel de alarma	Acción realizada
Apag Elec ECG Elec ECG Desc	Más de un electrodo de ECG se despegó de la piel o los cables de ECG se desconectaron del monitor.	Вајо	
Apag Elec V ECG Elec V Desc ECG	El electrodo precordial, V, de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	Asegúrese de que todos los electrodos y el cable paciente estén
Apag Elec LL ECG Elec LL Desc ECG	El electrodo LL de ECG se despegó de la piel o los cables de ECG se desconectaron del monitor.	Bajo	correctamente conectados
Apag Elec LA ECG Elec LA Desc ECG	El electrodo LA de ECG se despegó de la piel o los cables de ECG se desconectaron del monitor.	Bajo	
Apag Elec RA ECG Elec RA Desc ECG	El electrodo RA de ECG se despegó de la piel o los cables de ECG se desconectaron del monitor.	Bajo	
Señal ECG Excedida	El valor de medición de ECG ha excedido el rango de medición.	Alto	Verifique la conexión de los electrodos y el estado del paciente
Señal ECG Amplificada	La amplitud de la señal de ECG es demasiado grande	Bajo	Por faor modifique la ganancia de ECG

Falla Comunica ECG	Falla del módulo ECG o falla de comunicación	Alto	Detenga la función de medición del módulo de ECG y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Ruido de ECG	La señal de medición de ECG está muy interrumpida.	Bajo	Verifique la conexión de los electrodos y el estado del paciente
Apag Elec V1 ECG Elec V1 Desc ECG	El electrodo V1 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	
Apag Elec V2 ECG Elec V2 Desc ECG	El electrodo V2 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	
Apag Elec V3 ECG Elec V3 Desc ECG	El electrodo V3 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	Asegúrese de que todos los electrodos y el cable
Apag Elec V4 ECG Elec V4 Desc ECG	El electrodo V4 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	paciente estén correctamente conectados.
Apag Elec V5 ECG Elec V5 Desc ECG	El electrodo V5 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	
Apag Elec V6 ECG Elec V6 Desc ECG	El electrodo V6 de ECG se despegó de la piel o los cables de ECG se desconectaron.	Bajo	
Falla Comunica RESP	Falla del módulo RESP o falla de comunicación	Alto	Detenga la función de medición del módulo RESP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.

Apag Sensor SpO ₂ Sensor Desc SpO ₂	El sensor de SpO ₂ puede haber sido desconectado del paciente o del monitor.	Bajo	Asegúrese de que el sensor esté bien conectado al dedo u otras partes del paciente.
No hay Sensor SpO ₂	El sensor de SpO ₂ no fue conectado o correctamente conectado al monitor.	Bajo	Asegúrese de que el monitor y el sensor estén bien conectados, vuelva a conectar el sensor.
Falla Comunica SpO ₂	Falla del módulo SpO ₂ o falla de comunicación	Alto	Deje de usar la función de medición del módulo SpO_2 y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Perfusión baja SpO ₂	La señal de pulso es demasiado débil o la perfusión en el sitio de medición es demasiado baja	Bajo	Vuelva a conectar el sensor de SpO_2 y cambie el sitio de medición. Si existe un problema, notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica NIBP	Falla del módulo NIBP o falla de comunicación	Alto	Deje de usar la función de medición del módulo NIBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Brazal Suelto NIBP	El brazal no está correctamente colocado o no existe.	Bajo	Coloque correctamente el brazal.
Sobrepresión NIBP	La presión ha excedido el límite de seguridad superior especificado.	Bajo	Mida nuevamente, si la falla persiste, detenga la función de medición del módulo NIBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.

Información sobre alarmas

Señal Saturada NIBP	La amplitud de la señal es demasiado fuerte	Bajo	No permita que el paciente se mueva.
Pres Alta Inic NIBP	La presión inicial es demasiado alta durante la medición	Alto	Mida nuevamente, si la falla persiste, detenga la función de medición del módulo NIBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Reinic Inválido NIBP	La presión del hardware es demasiado alta	Bajo	Mida nuevamente, si la falla persiste, deje de utilizar la función de medición del módulo NIBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Tiempo Espera NIBP Tiempo Excedido NIBP	El tiempo de medición ha excedido el tiempo especificado.	Bajo	Mida nuevamente o utilice otro método de medición.
Fuga Aire NIBP	El brazal NIBP o la bomba tienen una fuga.	Bajo	Verifique el brazal NIBP y la bomba para detectar fugas.
Error Tip Braz NIBP	El tipo de brazal utilizado no se corresponde con el tipo de paciente.	Вајо	Confirme el tipo de paciente y cambie el brazal.
Error P. Aire NIBP Error de Presión Aérea	Presión atmosférica ambiental anormal o presión del sistema anormal.	Bajo	Verifique si la vía respiratoria está ocluida o si el sensor de presión funciona correctamente en el modo de medición de presión. Si el problema persiste, comuníquese con su personal de mantenimiento.
Error Autoprue NIBP Error AutoTest NIBP	Errores en el sensor u otro hardware.	Alto	Comuníquese con su personal de mantenimiento.

Fuga Neumática NIBP	El brazal NIBP o la bomba tienen una fuga.	Bajo	Verifique el brazal NIBP y la bomba para detectar fugas.
Falla Sistema NIBP	Hardware anormal	Alto	Comuníquese con su personal de mantenimiento.
Fuga Brazalete	El brazal, bomba o la manguera de conexión tienen una fuga.	Bajo	El brazal NIBP no está bien conectado, o hay una pérdida en la manguera de conexión respiratoria.
Error Prueba Fuga	Hardware anormal	Alto	Verifique si la manguera de conexión está ocluida o si el sensor de presión funciona correctamente en el modo de medición de presión. Si el problema persiste, comuníquese con su personal de mantenimiento.
Señal Débil NIBP	El brazal está demasiado flojo o el pulso del paciente es demasiado débil.	Bajo	Utilice otro método para medir la presión sanguínea.
Movimien Exces NIBP	Debido a un movimiento del brazo, el ruido de señal es demasiado grande o la frecuencia del pulso no es regular.	Bajo	Asegúrese de que el paciente sometido a monitoreo no se mueva.
Rango Excedido NIBP	Tal vez el valor de presión sanguínea del paciente esté más allá del rango de medición.	Bajo	Tal vez el valor de presión sanguínea del paciente esté más allá del rango de medición.
Apag Sensor TEMP T1 Sensor Apag TEMP T1	El cable de temperatura del canal 1 de TEMP puede estar desconectado del monitor.	Bajo	Asegúrese de que el cable esté conectado correctamente.
Apag Sensor TEMP T2 Sensor Apag TEMP T2	El cable de temperatura del canal 2 TEMP puede estar desconectado del monitor.	Bajo	Asegúrese de que el cable esté conectado correctamente.

Información sobre alarmas

T1 Excedida	El valor de medición T1 está más allá del rango de medición.	Alto	Verifique la conexión del sensor y el estado del paciente
T2 Excedida	El valor de medición T2 está más allá del rango de medición.	Alto	Verifique la conexión del sensor y el estado del paciente
Falla Comunica TEMP	Falla del módulo de TEMP o falla de comunicación.	Alto	Detenga la función de medición del módulo de TEMP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Apag Sensor Art Sensor Apag Art	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor PA Sensor Apag AP	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor CVP Sensor Apag PVC	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor RAP Sensor Apag PAD	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor LAP Sensor Apag PAI	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor ICP Sensor Apag PIC	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor P1 Sensor Apag P1	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.
Apag Sensor P2 Sensor Apag P2	El cable IBP se desconectó del monitor	Bajo	Verifique la conexión del sensor y vuelva a conectar el sensor.

Falla Comunica ART	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica PA Falla Comunica AP	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica CVP Falla Comunica PVC	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica RAP Falla Comunica PAD	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica LAP Falla Comunica PAI	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica ICP Falla Comunica PIC	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica P1	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.

Falla Comunica P2	Falla del módulo IBP o falla de comunicación	Alto	Detenga la función de medición del módulo IBP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
CO ₂ Fuera Rango	La concentración de CO ₂ excede el rango de precisión del módulo de gas.	Alto	Reduzca la concentración de CO ₂ .
Falla Comunica CO ₂	Falla del módulo de CO ₂ o falla de comunicación	Alto	Detenga la medición del módulo de CO_2 o notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Num Sensor CO ₂ TI	Sensor CO ₂ TI no conectado	Bajo	Inserte sensor de temperatura para inyección.
Num Sensor CO ₂ TB	El sensor CO ₂ TB no está conectado	Bajo	Inserte el sensor TB.
TEMP Fuera Rango	El valor de medición TB está por encima del rango de medición.	Alto	Verifique el sensor TB.
FaltaParámetroHemod	El cálculo HEMOD necesita parámetros	Alto	Ingrese la estatura y el peso del paciente.
Falta Parámetro CO ₂	La medición de CO ₂ necesita parámetros	Alto	Ingrese la estatura y el peso del paciente.
AA Fuera Rango	La concentración de AA excede el rango de precisión del módulo de gas.	Alto	Reduzca la concentración de AA.
Error Sensor O ₂	El sensor de oxígeno del módulo de gas secundario tiene una falla.	Medio	Detenga la medición del módulo de GAS y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Falla Comunica AG	Falla del módulo de GAS o falla de comunicación.	Alto	Detenga la función de medición del módulo de GAS y notifique al

			ingeniero biomédico o al personal de mantenimiento del fabricante.
RequerimientoCeroAG	El módulo AG requiere cero.	Bajo	Realice la puesta a cero.
Auto Prueba AG	El módulo AG está realizando la auto prueba.	Bajo	Espere a que finalice la auto prueba.
Reempl Sensor AG O ₂	Se debe reemplazar el sensor de O_2 .	Alto	Reemplace el sensor de O_2 .
Adapt Cheq AG	El módulo AG verifica el adaptador.	Bajo	Espere hasta que finalice la verificación.
RequerimientCalibrO ₂	Se debe calibrar O_2 .	Bajo	Calibre O ₂ .
Error Software AG	Software del módulo AG anormal	Alto	Reemplace la revisión de software.
Error Hardware AG	El módulo AG tiene una falla de hardware.	Alto	Verifique si el hardware funciona correctamente.
Error Motor AG	Motor del módulo AG anormal	Alto	Verifique si el motor funciona correctamente.
CalibrAG FaltFabric	Módulo AG no calibrado	Bajo	Calibre el módulo AG.
Error Sensor N ₂ O	Módulo AG anormal	Alto	Reemplace el módulo AG o verifique si el módulo funciona correctamente.
Adapta Reemplaz AG	Se debe cambiar el adaptador del módulo AG	Alto	Reemplace el adaptador.
O ₂ Fuera Rango	O ₂ está fuera de rango.	Alto	Asegúrese de que el rango de O_2 vuelva al valor normal.
Temp AG Fuera Rango	Temperatura del módulo AG fuera de rango	Alto	Asegúrese de que la temperatura vuelva al valor normal.
PresiónBarFueraRang	La presión baro del módulo AG está fuera de presión	Alto	Asegúrese de que el valor de presión baro vuelva al valor normal
IDAG AA NoConfiable	El módulo AG no puede identificar al agente AG.	Medio	El agente de gas no es
CalibrLapsoAG Progr	El módulo AG se está calibrando	Bajo	Espere a que finalice la calibración.

FallaCalibrLapso AG	Falla en la calibración del módulo AG	Medio	Verifique si el módulo funciona correctamente.
CeroAGDeshabilitado	No se puede calibrar el módulo AG	Medio	Verifique si el módulo funciona correctamente.
Cero AG Progreso	El módulo AG se está poniendo en cero	Bajo	Espere a que se ponga en cero.
AG Obstruido	La línea de muestreo está obstruida.	Medio	Reemplace la línea de muestreo.
Fallo Inicio De AG	El módulo AG tiene una falla.	Alto	El módulo AG no funciona correctamente.
Err Limite Datos AG	El módulo AG tiene una falla.	Alto	El módulo AG no funciona correctamente.
Err Usa AG	El módulo AG tiene una falla.	Alto	El módulo AG no funciona correctamente.
Falla Cal AG	El módulo AG no se calibra	Alto	El módulo AG no funciona correctamente.
Falla Cero De Ref	El módulo AG no se pone en cero	Alto	El módulo AG no funciona correctamente.
Cambio Sens Oxi AG	Reemplace el sensor de oxígeno del módulo AG	Bajo	Espere a que finalice el cambio.
Sin Sens Oxi De AG	El sensor de oxígeno se desconectó del módulo AG.	Alto	Conecte el sensor nuevamente.
Agentes mezclados AG	El módulo AG detecta un agente de gas de mezcla.	Medio	Cierre el agente de gas secundario
Oclusión CO ₂	El colector de agua del flujo secundario está obstruido.	Bajo	Asegúrese de que el escape de gas funcione bien
Sensor de CO ₂ con fallas			Detenga la función de
SobretempSensor CO ₂	Falla del módulo de CO ₂	Alto	medición del módulo de CO_2 , notifique al ingeniero biomédico.
Falla Comunica CO ₂	Falla del módulo de CO ₂ o falla de comunicación	Alto	Deje de utilizar la función de alarma de CO ₂ , y notifique al ingeniero

Error Ram CO ₂	Falla del módulo de CO ₂	Alto	biomédico o al personal de mantenimiento del fabricante.
Error Rom CO ₂	Falla del módulo de CO ₂	Alto	
RequerimientoCeroCO ₂	Falla de calibración cero	Bajo	
Adapt Cheq CO ₂	La cánula está desactivada o desconectada	Bajo	
CO ₂ Fuera Rango	La concentración de CO ₂ excede el rango de precisión del módulo de gas.	Alto	Reduzca la concentración de CO ₂ .
AA Fuera Rango	La concentración de AA excede el rango de precisión del módulo de gas.	Alto	Reduzca la concentración de AA.
Error Sensor O ₂	El sensor de oxígeno del módulo de gas secundario tiene una falla.	Medio	Detenga la medición del módulo de GAS y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
F.ComunicaTEMPRápid	Falla del módulo TEMP o falla de comunicación.	Alto	Detenga la función de medición del módulo TEMP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Limit temp excedido	El valor TEMP está más allá del rango de +25°C ~ +45°C.	Medio	Coloque el sensor en el soporte para sensores, retírelo y mida nuevamente.

Información sobre alarmas

Sin Sensor de Temp	El sensor TEMP no está conectado al módulo TEMP.	Bajo	Conecte el sensor y el monitor y mida nuevamente.
Temp Ambiente Alta	La temperatura del sensor es superior a +40°C	Bajo	Coloque el sensor en el soporte para sensores, mida nuevamente después de que la temperatura ambiente alcance un valor normal.
Temp Ambiente Baja	La temperatura del sensor es superior a +10°C	Bajo	Coloque el sensor en el soporte para sensores, mida nuevamente después de que la temperatura ambiente alcance un valor normal.
Error datos sonda	Sin conexión: resistencia NTC >R 0°C; Corto: resistencia NTC <r+100°c.< td=""><td>Medio</td><td>Coloque el sensor en el soporte para sensores, retírelo y mida nuevamente. Si el problema persiste, deje de utilizar la función de medición del módulo TEMP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.</td></r+100°c.<>	Medio	Coloque el sensor en el soporte para sensores, retírelo y mida nuevamente. Si el problema persiste, deje de utilizar la función de medición del módulo TEMP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
Error Sensor Calent	Falla única	Medio	Coloque el sensor en el soporte para sensores, retírelo y mida nuevamente. Si el problema persiste, deje de utilizar la función de medición del módulo TEMP y notifique al ingeniero biomédico o al personal de mantenimiento del fabricante.
TEMP En Sensor Alta	La temperatura original del sensor >+33 °C y ≤+40 °C.	Bajo	Coloque el sensor en el soporte para sensores, mida nuevamente después de que la temperatura del

			sensor alcance un valor normal.
Sensor Desconectado	Una vez que la temperatura del sensor alcanza el valor Predictiva desciende al valor más bajo que el valor Predictiva.	Medio	Vuelva a conectar el sensor y asegúrese de que el cable está bien conectado.
Impresora no configurada	El usuario presiona el botón IMPRIMIR cuando el monitor no está instalado con una impresora.	Bajo	Notifique al personal de mantenimiento del fabricante para que instale y configure la impresora.

5.3 Indicadores

Mensaje	Causa
Aprendizaje ARR ECG	Se requiere el desarrollo de la plantilla QRS para Arr. El análisis está en curso.
Búsqueda Pulso SpO ₂	El módulo SpO_2 analiza la señal del paciente y busca el pulso para computar la saturación, cuando el sensor está conectado con el paciente.
Medición manual	En modo de medición manual.
Medición continua	En modo de medición continua.
Medición automática	En modo de medición automática.
Abortar Medida	Medición finalizada
Calibración	Durante la calibración
Abortar Calibración	Calibración finalizada
Prueba de fuga	Durante prueba neumática
Prueba Fuga Ok	El módulo NIBP pasó la prueba de fuga.
Abortar Prueba Fuga	Finalizó la prueba neumática
Reinicio	Módulo NIBP en reinicio
Por favor inicie	El módulo NIBP está en estado inactivo
Hecho	Medición NIBP realizada correctamente
Medición continua	El módulo NIBP realiza la medición continua
Medición Stat	El módulo NIBP realiza la función STAT

Cambie a modo mantenimiento	El módulo NIBP está en modo normal, el usuario no puede iniciar la prueba de fuga y la calibración de presión. Ingrese Manteni Usuario > Mantener NIBP y cambie a Modo Mantenimiento para realizar la prueba de fuga o calibración de presión.
Cambie a modo normal	El módulo NIBP está en modo mantenimiento, el usuario no puede iniciar la medición de presión sanguínea. Ingrese Manteni Usuario > Mantenim NIBP y cambie a Modo Normal para realizar la medición de presión sanguínea.
Calent Sensor TEMP	Calent Sensor TEMP.
Coloque la sonda en el lugar de medición	La sonda no está colocada en el sitio de medición.
Espera de CO ₂	Pase de modo de medición a modo de espera, poniendo el módulo en estado de ahorro de energía.
Calent Sensor CO ₂	El módulo de CO_2 está en estado de calentamiento.
Temp Excedida	El valor de medición TB está más allá del rango de medición.
Temperatura excedida, falla de medición de C.O.	La medición de C.O. necesita parámetros
La medida de C.O. necesita parámetros	El cálculo HEMOD necesita parámetros
Necesario Parámetro Hemod	El cálculo HEMO Dinámica necesita parámetros
Sensor C.O. TB apagado	El cable de medición de TB o el sensor se desconectó del monitor
Sensor C.O. TI apagado	El cable de medición de TB o el sensor se desconectó del monitor
No hay sensor	No hay sensor
Midiendo	El módulo de C.O. está realizando la medición
Listo	El módulo de C.O. está listo
Resultado de C.O. no válido	El resultado de la medición de C.O. no es válido
Detener	La medición de C.O. está completa
Cancelar	Se canceló la medición de C.O.
Finalizó calentamiento	El monitor muestra este mensaje después de retirar el sensor del soporte y finalizar el calentamiento.
Finalizó medición	Una vez finalizada la medición Predictiva, los datos y el mensaje se visualizan en la interfaz.
Tiempo Medida Exc	No hay resultado de medición una vez que el módulo ingresa en el estado Predictiva durante 30s.

Espera AG

El módulo AG funciona en estado de espera.

5.4 Rango ajustable de los límites de alarma

Los límites de alarma de ECG se detallan de la siguiente manera: unidad (bpm)

	Tipo de paciente	ALM ALT	ALM BAJ
HR	ADU	300	15
	PED	350	15
	NEO	350	15

Los límites de alarma de análisis ST se detallan de la siguiente manera: unidad (mV)

	ALM ALT	ALM BAJ
ST	2,0	-2,0

Los límites de alarma PVCs superiores se detallan de la siguiente manera:

	ALM ALT	ALM BAJ
PVCs	10	

Los límites de alarma RESP se detallan de la siguiente manera: unidad (rpm)

Tipo de paciente	ALM ALT	ALM BAJ
ADU	120	6
PED	150	6
NEO	150	6

Los límites de alarma SpO2 se detallan de la siguiente manera: (% unidad)

	ALM ALT	ALM BAJ
SpO ₂	100	0

Los límites de alarma PR se detallan de la siguiente manera: unidad (bpm)

	ALM ALT	ALM BAJ
PR	300	30

Los límites de alarma NIBP se detallan de la siguiente manera (módulo EDAN): unidad (mmHg)

Tipo de paciente		ALM ALT	ALM BAJ
ADU	SIS	270	40
	DIÁS	215	10

	PAM	235	20
PED	SIS	200	40
	DIÁS	150	10
	РАМ	165	20
NEO	SIS	135	40
	DIÁS	100	10
	PAM	110	20

Los límites de alarma de NIBP se detallan de la siguiente manera (módulo M3600): unidad (mmHg)

Tipo de paciente		ALM ALT	ALM BAJ
ADU	SIS	270	40
	DIÁS	215	10
	РАМ	235	20
PED	SIS	200	40
	DIÁS	150	10
	РАМ	165	20
NEO	SIS	135	40
	DIÁS	100	10
	PAM	110	20

Los límites de alarma TEMP se detallan de la siguiente manera:

	ALM ALT	ALM BAJ
T1	50°C(122°F)	0°C(32°F)
T2	50°C(122°F)	0°C(32°F)
TD	50°C(90°F)	0°C(0°F)

Los límites de alarma IBP se detallan de la siguiente manera: unidad (mmHg)

	ALM ALT	ALM BAJ
Art	300	0
RAP	40	-10
LAP	40	-10
CVP	40	-10

РА	120	-6
ICP	40	-10
P1	300	-50
P2	300	-50

Los límites de alarma CO₂ se detallan de la siguiente manera:

	ALM ALT	ALM BAJ
EtCO ₂	150mmHg	0
FiCO ₂	50mmHg	0
AwRR	150 rpm	2 rpm

Los límites de alarma C.O. se detallan de la siguiente manera:

	ALM ALT	ALM BAJ
ТВ	43°C (109.4°F)	23°C (73.4°F)

Los límites de alarma Quick Temp se detallan de la siguiente manera:

Tipo de paciente	ALM ALT	ALM BAJ
ADU	42°C(107,6°F)	35,5°C(95,9°F)
PED	42°C(107,6°F)	35,5°C(95,9°F)

Los límites de alarma AG se detallan de la siguiente manera:

Tipo de paciente		ALM ALT	ALM BAJ
ADU	FiCO ₂	25.0%	0.0%
	EtCO ₂	25.0%	0.0%
	FiO ₂	100.0%	18.0%
	EtO ₂	100.0%	18.0%
	FiN ₂ O	100.0%	0.0%
	EtN ₂ O	100.0%	0.0%
	EtDes	18.0%	0%
	FiDes	18.0%	0%
	EtIso	5.0%	0%
	FiIso	5.0%	0%
	EtHal	5.0%	0%
	FiHal	5.0%	0%

	EtSev	8.0%	0%
	FiSev	8.0%	0%
	EtEnf	5.0%	0%
	FiEnf	5.0%	0%
	awRR	150 rpm	0 rpm
	Tiempo de apnea	40s	20s
PED	FiCO ₂	25.0%	0.0%
	EtCO ₂	25.0%	0.0%
	FiO ₂	100.0%	18.0%
	EtO ₂	100.0%	18.0%
	FiN ₂ O	100.0%	0.0%
	EtN ₂ O	100.0%	0.0%
	EtDes	18.0%	0%
	FiDes	18.0%	0%
	EtIso	5.0%	0%
	FiIso	5.0%	0%
	EtHal	5.0%	0%
	FiHal	5.0%	0%
	EtSev	8.0%	0%
	FiSev	8.0%	0%
	EtEnf	5.0%	0%
	FiEnf	5.0%	0%
	awRR	150 rpm	0 rpm
	Tiempo de apnea	40s	20s
NEO	FiCO ₂	25.0%	0.0%
	EtCO ₂	25.0%	0.0%
	FiO ₂	100.0%	18.0%
	EtO ₂	100.0%	18.0%
	FiN ₂ O	100.0%	0.0%
	EtN ₂ O	100.0%	0.0%
	EtDes	18.0%	0%
	FiDes	18.0%	0%

Manual de usuario del monitor de paciente

EtIso	5.0%	0%
FiIso	5.0%	0%
EtHal	5.0%	0%
FiHal	5.0%	0%
EtSev	8.0%	0%
FiSev	8.0%	0%
EtEnf	5.0%	0%
FiEnf	5.0%	0%
awRR	150 rpm	0 rpm
Tiempo de apnea	40s	20s

Capítulo 6 Gestión de pacientes

6.1 Admisión de un paciente

El monitor muestra los datos fisiológicos y los almacena en las tendencias ni bien se conecta a un paciente. Esto le permite monitorear a un paciente que todavía no fue admitido. Sin embargo, es importante admitir a los pacientes correctamente de modo que usted pueda identificar a su paciente en los registros, informes y dispositivos conectados en red.

Durante la admisión, usted ingresa los datos que necesita el monitor para garantizar una operación segura y precisa. Por ejemplo, el ajuste de categoría del paciente determina el algoritmo que utiliza el monitor para procesar y calcular algunas mediciones, los límites de seguridad que se aplican para determinadas mediciones y los rangos de límites de alarma.

Para admitir a un paciente:

- 1 Seleccione la tecla Admisión en la pantalla o
- 2 Seleccione **Menú** > **Conf Paciente** > **Nuevo Paciente**, y luego se visualiza un mensaje que le solicita al usuario que confirme para actualizar al paciente.
- 3 Haga clic en **No** para cancelar esta operación; haga clic en **Sí** y se visualizará la ventana **Info Paciente**.
- 4 Ingrese la información del paciente:
 - Num Serie: Ingrese el número de registro médico del paciente (MRN), por ejemplo, 12345678.
 - Apellido: Ingrese el apellido del paciente, por ejemplo, Maldonado.
 - Nombre: Ingrese el nombre del paciente, por ejemplo, Juan.
 - Género: Seleccione Mascul (Masculino) o Femeni (Femenino).
 - Tipo: Seleccione el tipo de paciente, Adulto, Pediat (Pediátrico), o Neonat (Neonato).
 - Tipo Sang: N/A, A, B, AB y O.
 - Factor Sanguíneo: Rh+ o Rh-
 - Tasa: Seleccione Enc o Apag (Debe seleccionar Enc si su paciente tiene un marcapasos).
 - Fecha Nacimiento: Ingrese la fecha de nacimiento del paciente.
 - Fecha Admisión: Ingrese la fecha de admisión del paciente.
 - Estatu (m): Ingrese la estatura del paciente.
 - **Peso** (kg): Ingrese el peso del paciente
 - Médico: Ingrese toda información adicional sobre el paciente o el tratamiento.
- 5 Seleccione Salida.

6.1.1 Tipo de paciente y estado del marcapasos

La configuración del tipo de paciente determina el algoritmo que utiliza el monitor para procesar y calcular algunas mediciones, los límites de seguridad que se aplican para determinadas mediciones y los rangos de límites de alarmas.

La configuración de marcapasos determina si el monitor muestra pulsos de marcapasos o no. Cuando **Tasa** está configurado en **Apag**, se filtran los pulsos del marcapasos y, por lo tanto, no se muestran en la onda de ECG.

ADVERTENCIA

- 1 Cambiar el tipo de paciente puede cambiar los límites de alarmas de arritmia y de NIBP. Siempre verifique los límites de alarmas para asegurarse de que son adecuados para su paciente.
- 2 Para pacientes que tienen marcapasos, debe configurar Marcapasos en Sí. Si se configura incorrectamente en No, el monitor puede confundir un pulso del marcapasos con un QRS y no activar una alarma durante una sístole.

6.2 Admisión Rápida

Si no tiene tiempo ni información para hacer la admisión completa de un paciente. Complete el resto de la información del paciente más tarde. Para hacer una admisión rápida de un paciente:

- 1 Seleccione **Menú** > **Conf Paciente** > **Admisión Rápida**, y luego se visualiza un mensaje que le solicita al usuario que confirme la actualización del paciente.
- 2 Haga clic en **No** para cancelar esta operación; haga clic en **Sí** para continuar y se visualizará la ventana **Admisión Rápida**, seleccione **Tipo** y **Tasa** y configúrelos en el modo correcto.
- 3 Seleccione Salida..

6.3 Edición de la información del paciente

Para editar la información del paciente una vez que fue admitido, seleccione Menú > ConfPaciente > Info Paciente, y realice los cambios necesarios en la interfaz emergente.

6.4 Actualización de un paciente

Siempre debe realizar una actualización antes de iniciar el monitoreo de un paciente nuevo. Cuando selecciona Menú > Conf Paciente > Admisión Rápida, o Menú > Conf Paciente > Nuevo Paciente, se visualiza un mensaje: Presionar 'Si' para crear nuevo perfil del paciente, limpiando todos los datos previos...

- Si el usuario selecciona Sí, el monitor actualizará la información del paciente.
- Si el usuario selecciona **No**, el monitor no actualizará la información del paciente y volverá a la interfaz de configuración del paciente.

ΝΟΤΑ

Al dar de alta al paciente borrará los datos del historial en el monitor asociados con ese paciente.

6.5 Sistema de monitoreo central

El monitor puede conectarse al sistema de monitoreo central. A través de la red:

- 1 El monitor envía la información del paciente, monitoreo en tiempo real o datos de medición, y todo tipo de ajustes al sistema de monitoreo central.
- 2 La información del monitoreo en tiempo real se visualiza en el sistema de monitoreo central al igual que en el monitor, y el sistema de monitoreo central puede realizar cierto control bilateral. Por ejemplo: cambiar información del paciente, límites de alarmas y demás.

Para obtener información detallada, consulte el Manual del usuario del sistema de monitorización central MFM-CMS y el Manual del usuario del sistema de monitorización central CMS.

También el monitor es compatible con el protocolo HL 7.

Capítulo 7 Interfaz del usuario

7.1 Configuración de estilo de interfaz

El usuario puede configurar la interfaz en base a sus necesidades. Las opciones de configuración son las siguientes:

- Barrido de la señal.
- Parámetros que se deben monitorear.

Cambiar la configuración de los parámetros puede presentar riesgos, por lo tanto, sólo personal autorizado puede modificarlos. Después de cambiar los ajustes, notifique al operador.

7.2 Selección de parámetros de pantalla

El usuario puede seleccionar los parámetros de pantalla en base a los requisitos de monitoreo y medición. Para seleccionar el parámetro:

1 Seleccione Menú > Conf Sistema > Mod Interr (Intercambiar Modulo)

- 2 Seleccione los parámetros necesarios en la interfaz emergente.
- 3 Presione Salida para salir del menú y la pantalla ajustará los parámetros automáticamente.

7.3 Cambio de la posición de la señal

El usuario puede cambiar las posiciones de las señales del parámetro A y el parámetro B, para hacerlo consulte los siguientes pasos:

- 1 Seleccione la señal A y abra el menú de configuración de la misma.
- 2 Seleccione **Cambio** del menú emergente y el nombre del rótulo deseado de la señal B de la lista desplegable.

7.4 Cambio de la disposición de la interfaz

Para cambiar la disposición de la interfaz, consulte los siguientes pasos:

- 1 Seleccione Menú > Conf Pantalla.
- 2 Seleccione una interfaz del menú emergente.
- 3 El usuario puede implementar un tipo de pantalla de funciones basado en los requerimientos. Si el usuario selecciona la opción Letra Gra (Letra grande), no hay ninguna función para seleccionar en la pantalla.

7.5 Visualización de pantalla de tendencias

Para ver la pantalla de tendencias, el usuario puede presionar la tecla **Pantalla Tendencias** directamente en la pantalla o seleccionar Menú > Conf Pantalla > Ver Selección > Pant Tend.

7.6 Visualización de pantalla de oxígeno

Para ver la pantalla de oxícardiorespirografía, el usuario puede presionar la tecla **CRG Oxígeno** en la pantalla o seleccionar **Menú** > **Conf Pantalla** > **Ver Selección** > **CRG Oxígeno**. Esta interfaz se utiliza siempre en UTIN / UCIN porque el SpO₂, FC (Frecuencia Cardíaca) y Resp del neonato son diferentes de los del adulto.

7.7 Visualización de pantalla con letra grande

Para abrir la pantalla con letra grande, consulte los siguientes pasos:

- 1. Seleccione la tecla Letra Grand directamente en la pantalla o
- 2. Seleccione Menú > Conf Pantalla > Ver Selección > Letra Gra para abrir esta interfaz.

Para ver la interfaz con letra grande de un parámetro específico, seleccione el cuadro de diálogo desplegable del parámetro en la interfaz (el círculo lila que se indica en la siguiente figura).

7.8 Cambio de los parámetros y los colores de las ondas.

El usuario puede configurar como desee los colores de visualización de los parámetros y las ondas. Para cambiar el color de visualización, seleccione **Menú > Mantenimiento > Manteni Usuario** e ingrese la contraseña necesaria **ABC**. Luego seleccione **Select Color** para realizar cambios de parámetro y color.

NOTA:

Para que se apliquen los cambios de color, reinicie el monitor después de cambiar los colores.

7.9 Transferencia de una configuración

Al instalar varios monitores con configuración de usuario idéntica, no es necesario configurar

cada dispositivo por separado. Se puede utilizar un controlador USB para transferir la configuración de monitor a monitor.

Para exportar la configuración del monitor actual:

- 1 Conecte el dispositivo USB al monitor del puerto USB.
- 2 Seleccione Config USB en Menú > Mantenimiento > Manteni Usuario, ingrese la contraseña necesaria ABC.
- 3 En el menú **Config USB**, seleccione **Exportar** para exportar la configuración. Se visualizará un mensaje de estado luego de la operación.

Para importar la configuración del controlador USB al monitor:

- 1 Conecte el controlador USB al puerto USB del monitor.
- 2 Seleccione Config USB en Menú > Mantenimiento > Manteni Usuario, ingrese la contraseña necesaria ABC.
- 3 En el menú **Config USB**, seleccione **Importar** para importar la configuración. Se visualizará un mensaje de estado luego de la operación.

NOTA:

- 1 La memoria flash USB solo es compatible con dos tipos de formato: FAT y FAT 32.
- 2 Los archivos de configuración exportados se guardan en la carpeta llamada USERCONFIG y el usuario no puede modificar los archivos de la carpeta.
- 3 Se pueden guardar y reconocer hasta tres archivos de configuración.

7.10 Configuración predeterminada

Para establecer la configuración predeterminada, seleccione **Menú** > **Por Defecto** y elija una configuración (adulto, pediátrico o neonato) según la categoría del paciente. Esta es la configuración de fábrica.

Capítulo 8 Monitoreo de ECG

8.1 Descripción general

El electrocardiograma (ECG) mide la actividad eléctrica del corazón y la muestra en el monitor como una señal y un número. Este capítulo también desarrolla el monitoreo de arritmias y el monitoreo de niveles de ST.

8.2 Información sobre seguridad de ECG

ADVERTENCIA

- 1 No entre en contacto con el paciente, la mesa ni el monitor durante la cardiodesfibrilación.
- 2 Utilice sólo el cable de ECG original para el monitoreo.
- 3 Al conectar los cables y electrodos, asegúrese de que ninguna parte conductora entre en contacto con la tierra. Verifique que todos los electrodos de ECG, incluyendo electrodos neutrales, estén bien asegurados al paciente pero no a la parte conductora ni a la tierra.
- 4 Verifique todos los días si se observa irritación cutánea provocada por los electrodos de ECG. Si es así, reemplace los electrodos cada 24 horas o cambie sus ubicaciones.
- 5 Coloque el electrodo cuidadosamente y asegúrese de que exista un buen contacto.
- 6 Verifique si la conexión de los electrodos es correcta antes del monitoreo. Si desenchufa el cable de ECG del monitor, la pantalla mostrará un mensaje de error "APAG ELEC ECG" (Electrodo ECG Desconectado- "Elec ECG Desc") y se activará una alarma audible.
- 7 Cuando utiliza el monitor con el cardiodesfibrilador u otro equipo de alta frecuencia, utilice un cable paciente protegido contra desfibrilaciones para evitar que el este último se queme.
- 8 A fin de evitar quemaduras, mantenga alejados los electrodos del bisturí eléctrico cuando utilice los equipos electroquirúrgicos.
- 9 Al utilizar unidades de Electrocirugía (UEC), no coloque los electrodos cerca de la placa de conexión a tierra del dispositivo de Electrocirugía, de lo contrario, habrá mucha interferencia con la señal de ECG.
- 10 Para pacientes con marcapasos, la función análisis de impulsos de paseo o estimulación debe estar ACTIVADA. De lo contrario, el impulso de paseo o estimulación puede contarse como un complejo QRS normal, dando como resultado una detección de falla u error ECG PERDIDO.
- 11 Los electrodos deben estar fabricados de los mismos materiales metálicos.
- 12 Los cables de ECG se pueden dañar al conectarlos a un paciente durante la desfibrilación. Revise que los cables funcionen antes de usarlos nuevamente.

NOTA:

- 1 La interferencia de un instrumento sin conexión a tierra cerca del paciente y la interferencia de una UEC puede generar interferencias en la señal de ECG.
- 2 IEC/EN60601-1-2 (la protección contra radiación es 3v/m) especifica que la densidad del campo eléctrico que supera 1v/m puede provocar un error en la medición de diversas frecuencias. Por lo tanto, se sugiere que no utilice equipos que generen radiación eléctrica cerca del Monitor de Paciente.
- 3 El uso simultáneo de un marcapasos y otros equipos conectados al paciente puede suponer un riesgo para la seguridad.
- 4 Si las señales del marcapasos están más allá del rango seleccionado, el ritmo cardíaco puede calcularse incorrectamente.
- 5 En la configuración predeterminada del monitor, las dos primeras señales en visualizarse corresponden al ECG.
- 6 Para mediciones dentro o cerca del corazón, recomendamos conectar el monitor al sistema equipotencial de puesta a tierra.
- 7 Para proteger al ambiente, se deben reciclar los electrodos usados o se los debe desechar correctamente.

8.3 Visualización de ECG

La figura a continuación se utiliza sólo como referencia.

El símbolo "①" indica la derivación visualizada en pantalla: se pueden seleccionar otras derivaciones como I, II, III, aVR, aVF, aVL, V. Si desea cambiar la derivación visualizada, consulte la sección *Selección de la derivación de cálculo*.

El símbolo "②" indica la ganancia de la señal: existen varias opciones seleccionables: X0.125, X0.25, X0.5, X1, X2 y Auto. Si desea cambiarla, consulte la sección *Cambio del tamaño de la señal de ECG*.

El símbolo "③" indica la configuración del Filtro, hay tres opciones: monitoreo, cirugía y diagnóstico. Si desea cambiarla, consulte la sección *Cambio de la configuración del Filtro de ECG*.

8.3.1 Cambio del tamaño de la señal de ECG

Si alguna de las señales visualizadas de ECG es demasiado pequeña o está cortada, puede cambiar su tamaño en la pantalla. Primero seleccione **Conf Onda ECG** > **Gan. ECG**, luego seleccione un factor adecuado del cuadro emergente para ajustar la señal de ECG:
X0.125 para hacer que la amplitud de la señal de ECG de 1mV pase a 1,25mm;

X0.25 para hacer que la amplitud de la señal de ECG de 1mV pase a 2,5mm;

X0.5 para hacer que la amplitud de la señal de ECG de 1mV pase a 5mm;

X1 para hacer que la amplitud de la señal de ECG de 1mV pase a 10mm;

X2 para hacer que la amplitud de la señal de ECG de 1mV pase a 20mm;

Auto permite al monitor seleccionar el factor de ajuste óptimo para todas las señales de ECG.

8.3.2 Cambio de la configuración del filtro de ECG

La configuración del filtro de ECG define cómo se suavizan las señales de ECG. En la pantalla del monitor, debajo del rótulo del electrodo, se muestra una abreviatura que indica el tipo de filtro. La configuración del filtro no afecta la medición del nivel ST.

Para cambiar la configuración del filtro, en el menú **Conf ECG**, seleccione **Filtros** y luego seleccione la configuración adecuada.

- Monitor: Use este modo en condiciones de medición normales.

- Cirugía: El filtro reduce la interferencia de la señal. Se debe utilizar si la señal está distorsionada por interferencia de alta o baja frecuencia. La interferencia de alta frecuencia, por lo general, da como resultado picos de gran amplitud que hacen que la señal de ECG tenga un aspecto irregular. Las interferencias de baja frecuencia normalmente usualmente generan oscilaciones o irregularidades en la línea de base de la señal. En el quirófano, el Filtro reduce los artefactos y la interferencia de unidades electroquirúrgicas. En condiciones de medición normales, seleccionar Cirugía puede suprimir demasiado los complejos QRS e interferir con la evaluación clínica del ECG que se visualiza en el monitor.
- Diagnós (Diagnóstico): Utilícelo cuando se requiera calidad de diagnóstico. La onda de ECG se visualiza sin filtrar de forma que modificaciones en los picos de la onda R o las elevaciones o depresiones discretas del segmento ST sean visibles.

8.4 Uso de alarmas de ECG

Las alarmas de ECG se pueden activar y desactivar y los cambios en los límites de alarma altos y bajos son similares a otras alarmas de medición, que se describen en la sección Alarmas. Aquí se describen funciones de alarma especiales que se aplican sólo al ECG.

8.5 Selección del electrodo de cálculo

En la interfaz **Normal**, los usuarios pueden seleccionar **3 Elec o 5 Elec** para este elemento. El complejo QRS normal debe ser:

- El QRS normal debe estar totalmente arriba o debajo de la línea basal y no debe ser bifásico. Para pacientes con marcapasos, los complejos QRS deben tener como mínimo dos veces la altura de los pulsos del marcapasos.
- El QRS debe ser alto y angosto.
- Las ondas-P y las ondas-T deben ser inferiores a 0,2 mV.

8.6 Procedimiento de monitoreo

8.6.1 Preparación

La piel es un mal conductor de la electricidad, por lo tanto, es importante preparar la piel del paciente para facilitar un buen contacto del electrodo con la piel.

- Seleccione sitios en los que la piel esté intacta, sin daños de ningún tipo.
- Afeite la zona, de ser necesario.
- Lave bien la zona con agua y jabón. (Nunca use éter o alcohol puro, porque aumenta la impedancia de la piel).
- Frote bien la piel para aumentar el flujo sanguíneo de los capilares en los tejidos y retire las escamas y grasa de la piel.

8.6.2 Conexión de los cables de ECG

- 1 Coloque un clip o broche a los electrodos antes de colocarlos.
- 2 Coloque los electrodos sobre el paciente. Antes de conectarlos, aplique gel conductor en los electrodos si no son electrodos autoabastecidos con electrolitos.
- 3 Conecte el electrodo al cable paciente.

PRECAUCIÓN

Para proteger el monitor de daños durante la desfibrilación, obtener información de ECG precisa y proteger de ruidos y otras interferencias, solo use electrodos de ECG y cables especificados por EDAN.

8.7 Selección del tipo de derivación

Para cambiar el tipo de electrodo:

- 1 Seleccione el área del parámetro de ECG, abra el menú Conf ECG;
- 2 Configure **Tipo Elec** en **3Elec**, **7Elec** o **12Elec** en base a los electrodos utilizados.

8.8 Instalación de los electrodos

NOTA:

La siguiente tabla proporciona los nombres de electrodos correspondientes utilizados en Europa y América, respectivamente. (Los nombres de los electrodos están representados por R, L, F, N, C, C1-C6 en Europa, cuyos nombres de electrodos correspondientes en América son RA, LA, LL, RL, V, V1-V6.)

AHA (Estándar Americano)		IEC (Estándar Europeo)		
Rótulos de los electrodos	Color	Rótulos de los electrodos	Color	
RA	Blanco	R	Rojo	

LA	Negro	L	Amarillo
LL	Rojo	F	Verde
RL	Verde	Ν	Negro
V	Marrón	С	Blanco
V1	Marrón/R ojo	C1	Blanco/Rojo
V2	Marrón/A marillo	C2	Blanco/Amarillo
V3	Marrón/V erde	C3	Blanco/Verde
V4	Marrón/A zul	C4	Blanco/Marrón
V5	Marrón/N aranja	C5	Blanco/Negro
V6	Marrón/Pú rpura	C6	Blanco/Púrpura

8.8.1 Colocación de electrodos para 3 derivaciones

Tome el estándar americano, por ejemplo, consulte la siguiente figura:

- Colocación RA directamente debajo de la clavícula y cerca del hombro derecho.
- Colocación LA directamente debajo de la clavícula y cerca del hombro izquierdo.
- Colocación LL a la izquierda del hipogastro.

Colocación de electrodos para 3 derivaciones

8.8.2 Colocación de electrodos para 7 derivaciones

Tome el estándar americano, por ejemplo, consulte la siguiente figura:

- Colocación RA: directamente debajo de la clavícula y cerca del hombro derecho.
- Colocación LA: directamente debajo de la clavícula y cerca del hombro izquierdo.
- Colocación RL: a la derecha del hipogastrio.
- Colocación LL: a la izquierda del hipogastrio.
- Colocación V: en el pecho, la posición depende de la selección de electrodos requerida.

Colocación de electrodos para 7 derivaciones

NOTA:

Para garantizar la seguridad del paciente, todos los electrodos deben conectarse al paciente.

Para 7 derivaciones, conecte el electrodo V a una de las posiciones indicadas a continuación:

- V1 En el 4to espacio intercostal en el margen derecho del esternón.
- V2 En el 4to espacio intercostal en el margen izquierdo del esternón.
- V3 En el medio entre los electrodos V2 y V4.
- V4 En el 5to espacio intercostal en la línea clavicular izquierda.
- V5 En la línea axilar anterior izquierda, horizontal con electrodo V4.
- V6 En la línea axilar media izquierda, horizontal con electrodo V4.
- V3R-V6R Del lado derecho del pecho en posiciones que corresponden a aquellas del lado izquierdo.
- VE Por encima de la posición xifoide.
- V7 En el 5to espacio intercostal en la línea axilar posterior izquierda de la

espalda.

• V7R En el 5to espacio intercostal en la línea axilar posterior derecha de la espalda.

Colocación de electrodos V para 7 derivaciones

8.8.3 Colocación de electrodos para 12 derivaciones

Tome el estándar americano como ejemplo. Los electrodos de 12 **derivaciones** deben colocarse en las extremidades y en el pecho. Los electrodos para las extremidades deben colocarse sobre la piel de las piernas y brazos, los electrodos que se colocan en el pecho deben seguir la indicación del médico. Consulte la siguiente figura:

Colocación de electrodos para 12 derivaciones

8.8.4 Colocación de electrodos de ECG recomendada para pacientes quirúrgicos

ADVERTENCIA

Al utilizar equipos para Electrocirugía (ES), los cables deben ubicarse en una posición equidistante del electrotomo de Electrocirugía y la placa de conexión a tierra ES para evitar cauterización. El cable del equipo de electrocirugía y el cable de ECG no deben estar enredados.

Los electrodos de ECG de monitoreo se utilizan principalmente para monitorear los signos vitales del paciente. Al utilizar el monitor de paciente con otros equipos de electrocirugía, se recomienda utilizar cables de ECG protegidos contra desfibrilación para contrarrestar dicha descarga.

La colocación de los electrodos de ECG dependerá del tipo de cirugía que se va a realizar. Por ejemplo, en una cirugía a corazón abierto, los electrodos pueden colocarse lateralmente en el pecho y en la espalda. En el quirófano, los artefactos pueden afectar la señal de ECG debido al uso de equipos de ES (Electrocirugía). Para contribuir a reducir este problema, puede colocar los electrodos en el hombro derecho e izquierdo , el lado derecho e izquierdo cercano al abdomen y el electrodo del pecho del lado izquierdo en el medio del pecho. Evite colocar los electrodos en la parte superior del brazo. De lo contrario, la señal de ECG será demasiado pequeña.

NOTA:

- 1 Si una forma de onda de ECG no es precisa, y los electrodos están bien conectados, intente cambiar el electrodo.
- 2 La interferencia de un instrumento sin conexión a tierra cerca del paciente y la interferencia ESU puede generar imprecisión de la forma de onda.

8.9 Configuración del menú de ECG

8.9.1 Configuración del origen de alarma

Para cambiar el origen de alarma, seleccione **Conf ECG** > **Orig Alar (Origen Alarma)**, luego se visualiza un cuadro emergente:

HR: el monitor considera HR como origen de alarma HR/PR;

PR: el monitor considera PR como origen de alarma HR/PR;

AUTO: Si el Origen de alarma está configurado en **Auto**, el monitor utilizará el ritmo cardíaco de la medición de ECG como un origen de alarma cada vez que se active la medición de ECG y como mínimo una derivación de ECG se pueda medir sin una condición técnica. El monitor automáticamente cambiará a Pulso como el origen de alarma si:

- una derivación de ECG válido no puede seguir midiendose y
- hay un origen de pulsos activado y disponible.

El monitor utilizará la frecuencia de pulsos de la medición activada como pulso del sistema. Si bien el Pulso es el origen de alarma, todas los análisis de arritmias y alarmas de ECG HR quedan desactivadas. Si está disponible nuevamente una derivación de ECG, el monitor utiliza automáticamente HR como origen de alarma.

8.9.2 Apagado inteligente de derivaciones

El el modo **7Elec, 12Elec,** si no se pueden medir **CH1 (canal 1)** y **CH2 (canal 2)** debido a algún electrodo desactivado u otros motivos, se puede pasar a otros modos para registrar una señal de ECG.

Para cambiar la configuración de apagado inteligente, seleccione **Config ECG** > **Apag inte**, se visualiza un menú emergente.

8.9.3 Configuración del volumen de latidos

El volumen de latidos corresponde a HR o PR, dependiendo de la configuración de su alarma HR. Hay cinco selecciones disponibles: **1**, **2**, **3**, **4**, **5**. **5** indica el volumen máximo. **1** indica el volumen mínimo.

Para cambiar el volumen de latidos, primero seleccione Config ECG > Vol Latido, luego seleccione un volumen adecuado de la lista emergente.

8.9.4 Visualización del ECG

Varía según el Tipo Elec. Cuando está configurado en 3Elec, Pantalla, puede configurarse en

Normal y puede mostrar una señal de ECG en la pantalla principal.

Cuando **Tipo Elec** está configurado en **5Elec, Pantalla** puede configurarse en **Normal**, Pantalla completa (**Pant Com**) y **media pantalla** (1/2 **pant**). Seleccione **Normal** para mostrar dos derivaciones de ECG en la pantalla principal; seleccione **Pant Com** para visualizar siete derivaciones de ECG que ocupan el área de siete señales en la pantalla principal; Seleccione 1/2 **pant** para visualizar siete derivaciones de ECG en la pantalla el forma de ECG en la pantalla pantalla, que ocupan el área de cuatro señales.

NOTA:

Si se selecciona **3Elec** en el menú **Conf ECG**, en el sub-menú sólo se podrá seleccionar **Normal** para la configuración de **Pantalla**.

8.9.5 Configuración del estado del marcapasos

Es importante establecer correctamente el estado del marcapasos cuando se comienza a monitorear el ECG. Para cambiar el estado del marcapasos en el menú Config ECG, seleccione **Tasa** para cambiar entre **Enc** o **Apag**. Cuando **Tasa** está configurado en **Activado**:

- La función Rechazo de pulsos del marcapasos está activada. Esto significa que los pulsos del marcapasos no se cuentan como complejos QRS adicionales.
- El símbolo de marcapasos se visualiza como ¹activado en la pantalla principal.

NOTA:

- 1 Al monitorear un paciente con un marcapasos, configure **Tasa** en **Enc**. Si monitorea un paciente sin marcapasos, configure **Tasa** en **Apag**.
- 2 Si **Tasa** está configurado en **Enc**, el sistema no realizará algunos tipos de análisis de arritmia (ARR).

ADVERTENCIA

Algunos pulsos del marcapaso pueden ser difíciles de suprimir. Cuando esto ocurre, los pulsos del marcapaso se cuentan como un complejo QRS, lo que podría causar mediciones de HR incorrectas y hacer que no se detectara un paro cardíaco o algunas arritmias. Mantenga a los pacientes con marcapasos bajo una estricta observación.

8.9.6 Calibración de ECG

Este elemento se utiliza para calibrar la señal de ECG. Cuando usted selecciona este elemento en el menú de configuración de ECG nuevamente, finaliza la calibración de la señal de ECG.

NOTA:

El dispositivo no puede monitorearse durante la calibración de ECG.

8.9.7 Configuración de la señal de ECG

Para cambiar la velocidad de barrido, seleccione **Config Onda ECG** > **Veloc.**, luego seleccione una configuración adecuada de la lista emergente. Cuanto más grande es el valor, más ancha se

verá la señal.

8.9.8 ECG de 12 derivaciones

Cuando un monitor se instala con 12 derivaciones, puede ofrecer funciones de monitoreo de ECG de 3 derivaciones, 5 derivaciones y 12 derivaciones.

8.10 Monitoreo del segmento ST

El monitor realiza análisis del segmento ST en latidos de marcapasos normales y auriculares y calcula las elevaciones y depresiones del segmento ST. Esta información se puede visualizar en forma de datos numéricos de ST y datos aislados en el monitor.

La función de monitoreo del segmento ST está desactivada en forma predeterminada. Puede **Activarla** cuando sea necesario. Cuando utiliza la función de análisis ST, los resultados del análisis ST se visualizarán a la derecha de la pantalla principal, consulte la siguiente figura.

NOTA:

Se ha probado la precisión de los datos arrojados por el algoritmo de medición del segmento ST. El médico debe determinar la importancia de los cambios en el segmento ST.

8.10.1 Configuración del análisis ST

Para cambiar el análisis ST, seleccione **Config ECG** > **Análisis ST**, luego seleccione **Enc** o **Apag** de la lista emergente.

8.10.2 Pantalla ST

La pantalla de su monitor puede estar configurada para verse ligeramente diferente a las ilustraciones.

ST	Ι	0.08	aVR -0.09	V	0.04
	II	0.10	aVL 0.03		
	III	0.02	aVF 0.06		

NOTA:

- 1 Análisis ST sólo puede utilizarse en modo adulto (Adu).
- 2 Cuando configura el **Análisis ST** en activado, el monitor debe estar en modo **Diagnós**.
- 3 El monitoreo de ECG debe estar en modo **Diagnós**.

8.10.3 Configuración de la alarma de análisis ST

El usuario puede seleccionar Config ECG > Análisis ST > Config Alarma para configurar el

Monitoreo de ECG

límite superior de alarma y el límite inferior de alarma. ALARMA ALTA puede configurarse en $0,2 \text{ mV} \sim 2.0 \text{ mV}$, y ALARMA BAJA puede configurarse en $-2.0 \text{ mV} \sim 0.2 \text{ mV}$. ALARMA ALTA debe ser mayor que ALARMA BAJA.

8.10.4 Acerca de los puntos de medición ST

El valor del nivel ST para cada complejo de latidos es la diferencia vertical entre el punto isoeléctrico (ISO) y el punto ST, como se indica en el diagrama a continuación. El punto ISO brinda la línea basal y el punto ST es el punto medio del segmento ST. El punto J es donde el complejo QRS cambia su pendiente; dado que es una distancia fija alejada del punto ST, puede resultar útil para ayudarlo a posicionar el punto ST correctamente.

DEFINIR PUNTOS

Los puntos de medición ST e ISO deben ajustarse cuando comienza a monitorear y si el ritmo cardíaco del paciente o la morfología del ECG cambian significativamente. Siempre asegúrese de que los puntos de medición ST sean adecuados para su paciente. El complejo QRS anormal no se considera en el análisis del segmento ST.

8.10.5 Ajuste de los puntos de medición ST e ISO

Dependiendo de la configuración de su monitor, el punto ST también puede establecerse.

Estos dos puntos pueden ajustarse girando la perilla. Al ajustar el punto de medición ST, el sistema le mostrará la ventana Punto de medición ST. El sistema muestra la plantilla del complejo QRS en la ventana. Se puede ajustar a través de las opciones resaltadas en pantalla. Puede seleccionar ISO o ST, gire la perilla hacia la izquierda o derecha para mover la línea del cursor. Cuando el cursor está en la posición requerida, puede seleccionar el punto base o el punto de medición.

8.11 Monitoreo de arritmia

8.11.1 Análisis de arritmia

El algoritmo de arritmia se usa para monitorear el ECG de pacientes neonatales y adultos en clínicas, detecta los cambios en el ritmo cardíaco y el ritmo ventricular, y también guarda eventos de arritmia y genera información de alarma. El algoritmo de arritmia puede monitorear pacientes con y sin marcapasos. El personal calificado puede utilizar el análisis de arritmia para evaluar el estado del paciente (como ritmo cardíaco, frecuencia de PVCs, ritmo y latido ectópico) y decidir

el tratamiento. Además de detectar cambios en el ECG, el algoritmo de arritmia también puede monitorear pacientes y brindar la alarma adecuada para dicha arritmia.

Tipos de ARRITMIA	Condición existente
ASÍSTOLE	No se detectó QRS durante 4 segundos
VFIB/VTAC	Taquicardia ventricular: La onda de fibrilación dura 4 segundos consecutivos; o la cantidad de latidos ventriculares continuos es mayor que el límite superior de eventos de latidos ventriculares (>5). El intervalo RR es inferior a 600ms.
VT>2	$3 \le$ el número de eventos Ventriculares Prematuros (PVCs) < 5
PARES	2 PVCs consecutivos
RITMO BIGEMI Bigeminismo	Bigeminismo Ventricular
RITMO TRIGEM Trigeminismo	Trigeminismo Ventricular
R EN T	Un tipo de PVC con la condición de que HR<100, el intervalo R-R es inferior a 1/3 del intervalo promedio, seguido de una pausa compensatoria de 1,25X el promedio del intervalo R-R (la siguiente onda R avanza en la onda T anterior).
PVC	Contracciones Ventriculares Prematuras (PVCs) simples que no pertenecen al tipo de PVCs antes mencionado.
Taquicardia	5 complejos QRS consecutivos en donde el intervalo RR es inferior a 0,5s.
Bradicardia	5 complejos QRS consecutivos en donde el intervalo RR es mayor a 1,5s.
LATIDOS FALT LatidosPerdidos	Cuando HR es inferior a 100 latidos/min., no se detecta ritmo cardíaco durante el período 1,75 veces del promedio del intervalo RR; o Cuando HR es superior a 100 latidos/min., no se detecta latido durante 1
	segundo.
IRR Irregular	RITMO IRREGULAR: El paciente tiene un ritmo cardíaco irregular, verifique el estado del paciente, los electrodos, el cable paciente.
PNC MPnoSensado	MARCAPASOS NO CAPTADO: Una vez que se fija el ritmo del marcapasos, el complejo QRS no puede detectarse durante 300ms.
PNP MPsinRitmo	MARCAPASOS SIN RITMO FIJADO: Después del complejo QRS, no se detecta el marcapasos durante 1, 75 veces del intervalo RR.
VBRADI BradiVent	BRADICARDIA VENTRICULAR: El paciente tiene un ritmo cardíaco irregular y su ritmo cardíaco promedio es inferior a 60 latidos/min. Verifique su estado, los electrodos y cable paciente.

El monitor puede realizar hasta 16 análisis de arritmia diferentes.

VENT	RITMO VENTRICULAR: El paciente tiene un ritmo cardíaco irregular,
	verifique el estado del paciente, los electrodos y cable paciente.

8.11.2 Menú de análisis ARR

8.11.2.1 Activar y desactivar el análisis ARR

Para activar y desactivar el análisis ARR, en el menú **Config ECG**, seleccione **Análisis ARR** para cambiar entre **Enc** y **Apag** en la interfaz emergente.

8.11.2.2 Alarma de PVCs

Seleccione Enc en el menú para activar el mensaje de aviso cuando se produce una alarma;

seleccione Apag para desactivar la función alarma, y habrá un símbolo *magnativar junto a PVCs*.

ADVERTENCIA

Cuando la Alarma de PVCs está configurada en DESACTIVADO, el monitor no emitirá un aviso de alarma incluso si se genera una alarma. Para evitar poner en peligro la vida del paciente, el usuario debe utilizar esta función con precaución.

8.11.2.3 Reaprendizaje ARR

Utilice esta opción para iniciar un procedimiento de aprendizaje y se visualizará en pantalla **Aprendizaje ARR ECG**. El APRENDIZAJE ARR ECG comenzará automáticamente en el siguiente estado:

- Cambio del tipo de derivación;
- Conexión de electrodos;
- Actualización de pacientes;
- Inicio manual del aprendizaje ARR;
- Después de la activación del análisis ARR
- El módulo está configurado en activado;
- El modo de calibración se cambia a modo de medición normal;
- Salida del modo Demo;
- Salida del modo de Espera;

8.11.2.4 Alarma de arritmia

Los usuarios pueden activar o desactivar todas las alarmas de arritmia seleccionando **Config** ECG > Análisis ARR > Alarm ARR. Y algunas alarmas de arritmia pueden activarse o desactivarse individualmente. Estas son: Sístole, FIB/TAC Ventri, R-EN-T, VT>2, PAR, PVC, BIGEMINIA, TRIGEMINIA, TAQUI, BRADI, Latid Faltantes, IRR, PNC, PNP, VBRADY

y VENT.

Para activar o desactivar una alarma individual, seleccione **Config ECG > Análisis ARR > Alarm ARR**. El usuario puede configurar individualmente cada alarma ARR en la interfaz emergente.

8.12 Monitoreo de ECG de 12 derivaciones

8.12.1 Función de diagnóstico

Si el dispositivo iM80 está equipado con monitoreo de 12 derivaciones, tendrá la función de diagnóstico automático. Para utilizar esta función:

- 1 En el menú Conf ECG, configure el Tipo Elec en 12Elec; también en el menú Configuración de ECG, configure la Pantalla en 12Elec.
- 2 Seleccione la tecla rápida **EstudioECG** en la pantalla.
- 3 Se visualiza la interfaz **Info Diagnosis** que se muestra en la Figura a. Luego, el resultado del diagnóstico se visualiza en la interfaz después de aproximadamente 10 segundos, como se muestra en la Figura b.

Info Diagnosis					
Analysis Time:			-/	4	
HR:	0.777	EJES P/C	RS/T:		
Intervalo PR:		RV5/5V1	Amp:		
Intervalo QRS:		RV5+SV1 Amp:			
QT/QTC Interval:		Calculating			
Diag Códig	Diag Resultados				
		-	100101-00		
Onda	\$	¥	Born	ar	Impres

Figura a

Manual de usuario del monitor de paciente

Info Diagnosis					
Análisis de Tiempo	2000 02 0	01 01:03:25	1/1		
ECG12RES_FR	solprin	EJES IVQ	R5/1;	54/44/499	
PRInterval	176ms	ECGLER	S_RVSSV1	1.09/0.55mv	
QRSDuration	72ms ECGL2RES_RV5SV1_2 1.64mv				
ECCLORES_QTOTC	339/339ms				
Diag códig	Diag resultados				
800	Ritmo sinusoidal				
					-
Onda	\$	¥	Borrar	Imp	res
Salida					

Figura b

La Figura b muestra el tiempo de análisis, la frecuencia cardiaca (HR), el eje P/QRS/T, el intervalo RR, la amplitud RVS/SV1 (amp RVS/SV1), la duración de QRS, la amplitud RV5+SV1 (amp RV5+SV1), el intervalo QT/QTC y el código de diagnóstico.

Para obtener más información sobre la revisión del diagnóstico, consulte la sección *Revisión del diagnóstico de 12 derivaciones*.

8.12.2 Medición e interpretación

La función de medición proporciona la medición automática de los parámetros comunes, como frecuencia cardiaca, intervalo PR, duración del complejo QRS, intervalo QT, eje P/QRS/T, amplitud RV5/SV1, etc. La función de interpretación proporciona el diagnóstico automático de cientos de casos anormales, como arritmia, bloqueo AV, bloqueo de conducción ventricular, infarto de miocardio, hipertrofia ventricular y agrandamiento auricular, anormalidad ST-T y desviación de ejes eléctricos.

Capítulo 9 Monitoreo de la respiración (RESP)

9.1 Descripción general

El monitor mide la respiración sensando la variación de impedancia torácica entre dos electrodos de ECG. El cambio de la impedancia entre los dos electrodos (debido al movimiento torácico), genera una señal respiratoria en la pantalla.

9.2 Información sobre seguridad de RESP

ADVERTENCIA

- 1 Si no establece correctamente el nivel de detección para la respiración en el modo de detección manual, el monitor podría no detectar apnea. Si establece el nivel de detección demasiado bajo, es más probable que el monitor detecte actividad cardíaca e interprete incorrectamente actividad cardíaca como actividad respiratoria en caso de apnea.
- 2 La medición de respiración no reconoce apneas obstructivas y mixtas, sólo activa una alarma cuando transcurre un tiempo preajustado desde la última respiración detectada.
- 3 Si funciona bajo condiciones según la Norma EMC EN 60601-1-2 (Inmunidad radiada 3V/m), las resistencias de campo superiores a 1V/m pueden causar mediciones erróneas en diversas frecuencias. Por lo tanto, se recomienda evitar el uso de equipos de radiación eléctrica cerca del monitor.
- 4 El monitoreo de la respiración del instrumento cardiogénico en impedancia puede dificultar la detección de respiraciones o, de lo contrario, puede contarse como respiraciones. En algunos casos, la frecuencia respiratoria también puede corresponderse con la frecuencia cardiaca, lo que dificulta determinar si la señal se debe a la respiración o al ciclo cardiaco. No confíe en el monitoreo RESP como el único método para detectar el cese de la respiración. Siga las directrices del hospital y las mejores prácticas clínicas con respecto a la detección de apnea, incluido el monitoreo de parámetros adicionales que indican el estado de oxigenación del paciente, como etCO₂ y SpO₂.

NOTA:

El monitoreo de RESP no está recomendado en pacientes muy activos, dado que esto puede causar falsas alarmas.

9.3 Pantalla de Resp

9.4 Colocación de electrodos para monitoreo de Resp

Las técnicas de preparación de la piel del paciente correctas para la colocación de electrodos son importantes para la medición de Resp: encontrará esta información en el capítulo sobre ECG.

La señal de Resp siempre se mide entre dos de los electrodos de ECG. Hay dos electrodos de ECG estándares para seleccionar: electrodo I (RA y LA) y electrodo II (RA y LL).

Colocación de electrodos para 5 derivaciones

9.5 Superposición cardíaca

La actividad cardíaca que afecta la señal de Resp se denomina superposición cardíaca. Se produce cuando los electrodos de Resp captan los cambios de impedancia provocados por el flujo sanguíneo rítmico. La colocación correcta de los electrodos puede contribuir a reducir la superposición cardíaca: evite interponer entre los electrodos utilizados en la monitorización de la respiración, el área del hígado y los ventrículos del corazón. Esto es de vital importancia en neonatos.

9.6 Expansión torácica

Algunos pacientes, en especial los neonatos, expanden el tórax hacia los lados. En estos casos, para optimizar el sensado de la onda respiratoria, se recomienda colocar los dos electrodos utilizados en la monitorización de la respiración en la parte izquierda del tórax y en la línea axilar derecha, en el punto de mayor amplitud respiratoria del paciente.

9.7 Respiración abdominal

Algunos pacientes con movimiento pectoral restringido respiran principalmente con el abdomen. En estos casos, es posible que tenga que colocar el electrodo de la pierna izquierda en la parte izquierda del abdomen en el punto de máxima expansión abdominal para optimizar la onda respiratoria.

NOTA:

Coloque los electrodos rojos y verdes diagonalmente para optimizar la señal de la respiración. Evite interponer entre los electrodos utilizados en la monitorización de la respiración, el área del hígado y los ventrículos del corazón para evitar la superposición cardíaca o artefactos del flujo sanguíneo pulsante. Esto es de vital importancia en neonatos.

9.8 Selección del electrodo de Resp

Para cambiar el electrodo Resp, en el menú **Config Resp**, seleccione **Elec Resp** para elegir el electrodo adecuado de la lista emergente.

9.9 Cambio de tipo de fijación

Para cambiar el modo de cálculo, en el menú **Conf Resp**, configure **Fijar Tipo** en **Manual** o **Auto**. Cuando está configurado en modo **AUTO**, las opciones **Fijar Alta** y **Fijar Baja** no están disponibles y el monitor puede calcular la frecuencia respiratoria automáticamente. Cuando está configurado en modo **Manual**, puede ajustar las líneas discontinuas en el área RESP mediante los elementos **Fijar Alta** y **Fijar Baja**.

9.10 Cambio del tamaño de la señal de respiración

Seleccione el área de la señal de Resp para abrir el menú Forma de onda Resp:

- Seleccione **AMP**, luego elija el valor adecuado. Cuanto mayor es el dicho valor, mayor será la amplitud.
- Seleccione Veloc: seleccione una configuración adecuada de la lista emergente.

9.11 Uso de alarmas de Resp

Las alarmas de Resp pueden activarse y desactivarse y los límites de alarma altos y bajos pueden modificarse al igual que otras alarmas de medición, según se describe en el capítulo Alarmas.

9.12 Cambio del tiempo de apnea

La alarma de apnea es una alarma roja de alta prioridad que se utiliza para detectar apneas. El tiempo de demora de la alarma de apnea define el período entre el punto en el que el monitor no puede detectar ninguna actividad respiratoria y la activación de la alarma de apnea.

- 1. En el menú Conf Resp, seleccione Alarm Apn.
- 2. Seleccione la configuración adecuada de la lista emergente.

Capítulo 10 Monitoreo de la saturación (SpO₂)

10.1 Descripción general

La SpO₂ se basa en la medición de la absorción del oxígeno del pulso sanguíneo a la luz roja e infrarroja mediante un sensor de dedo y la unidad de medición de SpO₂. La medición del pletismograma de SpO₂ se utiliza para determinar la saturación de oxígeno de hemoglobina en la sangre arterial. Si, por ejemplo, 97% de las moléculas de hemoglobina en los glóbulos rojos de la sangre arterial se combina con oxígeno, entonces la sangre tiene una saturación de oxígeno de SpO₂ del 97%. Los datos numéricos de SpO₂ en el monitor indicarán 97%. Los datos numéricos de SpO₂ muestran el porcentaje de moléculas de hemoglobina que se combinaron con moléculas de oxígeno para formar oxihemoglobina. El parámetro SpO₂/PLETH también puede proporcionar una señal de frecuencia del pulso y una onda de pletismograma.

10.2 Información sobre seguridad de SpO₂

ADVERTENCIA

- 1 Si el sensor de SpO₂ no funciona correctamente, vuelva a conectar el sensor o cámbielo por uno nuevo.
- 2 No utilice los sensores SpO₂ estériles que se incluyen si el envoltorio se encuentra abierto o el sensor está defectuoso y devuélvalos al proveedor.
- 3 El monitoreo prolongado y continuo puede aumentar el riesgo de un cambio inesperado en la condición dérmica como sensibilidad anormal, enrojecimiento, vesículas, putrefacción represiva y demás. Es de vital importancia verificar la colocación del sensor en neonatos y pacientes con perfusión deficiente o dermograma inmaduro mediante la colimación de la luz y conexión adecuada conforme estrictamente con los cambios de la piel. De acuerdo al paciente, puede ser necesario realizar chequeos frecuentes.
- 4 Se puede provocar daños en el tejido mediante la aplicación incorrecta o durante usos prolongados del sensor en el mismo dedo (más de 4 horas). Inspeccione el sensor periódicamente según el manual del usuario del sensor.
- 5 El sensor de SpO₂ para neonatos sólo puede utilizarse cuando es necesario, no más de 20 minutos por vez.
- 6 Utilice sólo sensores y cables de extensión de sensor permitidos por EDAN. Otros sensores o cables de extensión pueden generar un desempeño inadecuado del monitor y/o lesiones menores.

NOTA

- 1 Asegúrese de que la uña cubra la ventana de luz. El cable debe estar en el dorso de la mano.
- 2 La señal de SpO₂ no es proporcional al volumen del pulso.

- 3 Evite colocar el sensor en las extremidades con un catéter arterial o línea de infusión venosa intravascular.
- 4 No utilice el tester funcional para acceder a la precisión de SpO₂.
- 5 El dispositivo se calibró para mostrar la saturación de oxígeno funcional.
- 6 Los materiales con los que el paciente o cualquier otra persona pueden entrar en contacto cumplen con la norma ISO10993.

10.3 Medición de SpO₂

- 1. Seleccione la configuración de categoría de paciente (adulto/pediátrico y neonato), dado que se utiliza para optimizar el cálculo de SpO_2 y los datos numéricos del pulso.
- 2. Durante la medición, asegúrese de que el sitio de aplicación:
 - tenga flujo pulsátil, idealmente con una buena perfusión de circulación.
 - no haya cambiado sus espesor, causando un calce inadecuado del sensor.

10.4 Procedimiento de medición

- 1. Encienda el monitor.
- 2. Conecte el sensor al sitio adecuado del dedo del paciente.
- 3. Enchufe el conector del cable de prolongación del sensor en el toma de SpO₂ en el módulo de SpO₂.

Montaje del sensor

ADVERTENCIA

Inspeccione el sitio de aplicación cada dos a tres horas para asegurarse de la calidad de la piel y que la alineación óptica sea correcta. Si la calidad de la piel cambia, pase el sensor a otro sitio. Cambie el sitio de aplicación como mínimo cada cuatro horas.

NOTA:

Los contrastes inyectados como azul de metileno o dishemoglobinas intravasculares como metahemoglobina y carboxihemoglobina pueden generar mediciones imprecisas.

La interferencia puede ser causada por:

- Niveles elevados de luz ambiente o luz estroboscópica o luces destellantes (como lámparas de alarmas contra incendios). (Consejo: cubra el sitio de aplicación con material opaco.)
- Interferencia electromagnética.
- Movimiento excesivo del paciente y vibración.
- Ruido eléctrico de alta frecuencia, incluidos desfibriladores y aparatos electroquirúrgicos.
- Inyecciones de contrastes intravasculares.
- Concentraciones considerables de hemoglobina disfuncional, como carboxihemoglobina y metahemoglobina.
- Aplicación incorrecta del sensor.
- Atenuación de señales altas o perfusión baja.
- Pulsación venosa.
- Colocación del sensor en una extremidad que tiene un brazalete de presión sanguínea, un catéter arterial o una línea intravascular.

10.5 Comprensión de alarmas de SpO₂

Esto se refiere a alarmas específicas de SpO_2 . Consulte la sección Alarmas para obtener información general sobre alarmas. La SpO_2 ofrece alarmas de límite alto y bajo y los usuarios pueden ajustarlas.

10.6 Ajuste de límites de alarma

En el menú Conf SpO₂, seleccione Conf Alarma:

- Configure el límite de alarma alto de SpO₂ en un valor adecuado en la interfaz emergente.
- Configure el límite de alarma bajo de SpO₂ en un valor adecuado en la interfaz emergente.

ADVERTENCIA

Los altos niveles de oxígeno pueden ser un factor desencadenante de fibroplasia retrolenticular en bebés prematuros. Si puede ser peligroso NO defina el límite de alarma alto en el 100%, lo que equivale a apagar la alarma.

10.7 Configuración de SpO₂ como origen del pulso

- 1. En el menú Conf PR, seleccione Fuente PR;
- 2. Seleccione SpO_2 de la lista emergente.

10.8 Configuración del tono de vibración

Si la modulación del tono está activada, el sonido PR disminuye cuando baja el nivel de SpO_2 . En el menú **Conf SpO₂**, seleccione el tono de vibración para cambiar entre **Enc** y **Apag**.

10.9 Configuración de sensibilidad

La sensibilidad diferente indica una frecuencia de actualización diferente. Alto indica que la frecuencia de actualización del valor de SpO_2 es el más frecuente. Para cambiar la sensibilidad, siga estos pasos:

- 1 Seleccione el menú **Conf SpO**₂;
- 2 Seleccione **Sensibili** en la interfaz y seleccione la sensibilidad deseada en la lista emergente.

Capítulo 11 Monitoreo de la frecuencia de pulso (PR)

11.1 Descripción general

El dato numérico del pulso cuenta las pulsaciones arteriales que resultan de la actividad mecánica del corazón en latidos por minuto (bpm). Puede visualizar un pulso de cualquier señal de SpO_2 medido o cualquier presión arterial.

11.2 Configuración de la fuente de obtención del PR

El monitor brinda opciones para la fuente de PR, pero actualmente sólo la SpO_2 es compatible. Si un parámetro como origen PR está desactivado, el monitor se activará en base a la prioridad. Si todos los parámetros que generan SpO_2 están desactivados, el parámetro PR se desactivará.

11.3 Configuración del volumen PR

Hay cinco selecciones disponibles: 1, 2, 3, 4, y 5. 5 indica el volumen máximo. 1 indica ausencia de sonido. Puede cambiar Volume PR en el menú Conf PR.

11.4 Uso de alarmas de pulso

Puede cambiar los límites de alarma de la frecuencia de pulso en el menú **Conf PR** seleccionando **Conf Alarma**. Las alarmas de pulso sólo se generan cuando la fuente de alarma activa está configurada en Pulso, la fuente de pulso está configurada como pulso del sistema y las alarmas de pulso están activadas.

11.5 Seleccionando la fuente de alarma activa

En la mayoría de los casos, los datos numéricos de HR y de pulso son idénticos. Para evitar alarmas simultáneas de HR y de pulso, el monitor utiliza ECG o pulso como fuente de alarma activa. Para cambiar la fuente de alarma, seleccione Origen de alarma en el menú ECG/Alarmas de pulso, luego seleccione

- **HR**: si desea que HR sea la fuente de alarma para HR/Pulso.
- **PR**: Si selecciona Pulso como la fuente de alarma activa, el monitor le solicitará que confirme su opción. Tenga en cuenta que si selecciona Pulso la fuente de alarma, todas las alarmas de arritmia y HR ECG están desactivadas.
- AUTO: Si la fuente de alarma está configurado en Auto, el monitor utilizará el ritmo cardíaco de la medición de ECG como fuente de alarma cada vez que se active la medición de ECG y como mínimo se pueda medir una derivación de ECG sin una condición técnica. El monitor automáticamente cambiará a Pulso como fuente de alarma.

Capítulo 12 Monitoreo de la Presión no Invasiva (NIBP)

12.1 Descripción general

Este monitor utiliza el método oscilométrico para medir NIBP. Puede utilizarse para pacientes adultos, pediátricos y neonatales.

Los dispositivos oscilométricos miden la amplitud de los cambios de presión en el brazal de oclusión a medida que el brazal se desinfla a partir de la presión sistólica. La amplitud aumenta repentinamente a medida que el pulso pasa por la oclusión en la arteria. Cuando la presión del brazal se sigue reduciendo, las pulsaciones aumentan en amplitud, alcanzan un máximo (que se aproxima a la presión media) y luego disminuyen.

En modo adulto y pediátrico, las medidas de presión sanguínea que se determinan con este dispositivo cumplen el Estándar Nacional Estadounidense para esfigmomanómetros electrónicos o automatizados (ANSI/AAMI SP10-1992) en relación con el error de media y desviación estándar, al compararse con mediciones auscultatorias en una población representativa de pacientes. Se utilizó el quinto sonido de Korotkoff como referencia auscultatoria para determinar la presión diastólica.

En modo neonatal, las mediciones de presión sanguínea que se determinaron mediante este dispositivo cumplen el Estándar Nacional Estadounidense para esfigmomanómetros electrónicos o automatizados (ANSI/AAMI SP10-1992) en relación con el error de media y desviación estándar, al compararse con mediciones auscultatorias en una población representativa de pacientes.

12.2 Información sobre seguridad de la NIBP

ADVERTENCIA

- 1 No mida el valor de la PNI NIBP en pacientes con enfermedad de células falciformes o ninguna otra condición en la que se haya producido o cabe esperar daños en la piel.
- 2 Utilice el criterio clínico para decidir si se deben realizar mediciones automáticas frecuentes de la presión sanguínea en pacientes con trastornos graves de la coagulación debido al riesgo de provocar hematomas en el miembro que tiene puesto el brazal.
- 3 Asegúrese de que esté seleccionada la configuración correcta al realizar las mediciones. Puede resultar peligroso para los niños utilizar un nivel de sobrepresión.
- 4 El equipo está preparado para su uso en técnicas de electrocirugía.
- 5 El equipo puede brindar un medio protector para evitar que el paciente sufra quemaduras al utilizarlo con EQUIPOS QUIRÚRGICOS HF. El equipo está protegido contra los efectos de la descarga de un desfibrilador.
- 6 Antes de iniciar una medición, verifique que haya seleccionado una configuración adecuada para su paciente (adulto, niño o neonato).

ADVERTENCIA

- 7 No coloque el brazal en un miembro que tiene una infusión intravenosa o un catéter. Esto podría causar daños en el tejido que rodea al catéter cuando la infusión se vuelve más lenta o se bloquea mientras se infla el brazal.
- 8 Asegúrese de que el conducto de aire que conecta el brazal de presión sanguínea y el monitor no esté bloqueado ni enredado.
- 9 No coloque el brazalete en una extremidad que se utilice para infusiones IV, ya que la inflación del brazalete puede obstruir la infusión, lo que puede causar daños al paciente.

NOTA:

- 1 Se sugiere que el usuario no comience la medición de la NIBP cuando se indica batería baja porque el monitor puede apagarse automáticamente.
- 2 Si se genera una alarma o la medición falla, interrumpa la medición.
- 3 Si derrama líquido en el equipo o accesorios, en especial si existe la posibilidad de que pueda ingresar dentro de las mangueras o del dispositivo de medición, comuníquese con su personal de mantenimiento.
- 4 El uso continuo del modo de medición automática para intervalos breves puede producir incomodidad en el paciente.

12.3 Introducción de la medición NIBP oscilométrica

Los dispositivos oscilométricos miden la amplitud de los cambios de presión en el brazal de oclusión a medida que el brazal se desinfla a partir de la presión sistólica. La amplitud aumenta repentinamente a medida que el pulso pasa por la oclusión en la arteria. Cuando la presión del brazal sigue reduciendo, las pulsaciones aumentan en amplitud, alcanzan un máximo (que se aproxima a la presión media) y luego disminuyen.

12.4 Limitaciones de la medición

Las mediciones resultan imposibles con extremos de ritmo cardíaco inferiores a 40 bpm o mayores a 240 bpm, o si el paciente está conectado a una máquina de circulación extracorporal.

La medición puede resultar imprecisa o imposible en las siguientes situaciones:

- Si resulta difícil detectar un pulso de presión arterial regular.
- Pacientes con arritmias cardíacas.
- Paciente con movimiento excesivo y continuo como temblores o convulsiones.
- Pacientes con cambios bruscos de la presión sanguínea.
- Pacientes en estado de shock grave o hipotermia que reduce el flujo sanguíneo hacia la periferia.

- Pacientes obesos, con una gruesa capa de grasa que rodea una extremidad y reduce las oscilaciones provenientes de la arteria.
- Pacientes con una extremidad edematizada.

12.5 Métodos de medición

Existen tres métodos para medir la NIBP:

- Manual medición a demanda.
- Automático mediciones repetidas continuamente (intervalo ajustable entre 1 y 480 minutos).
- Secuencia la medición funcionará consecutivamente en cinco minutos, luego el monitor ingresa en modo manual.

ADVERTENCIA

Las mediciones de la presión sanguínea no invasivas en modo Auto pueden asociarse con sentido, isquemia y neuropatía en el miembro que tiene el brazal. Al monitorear a un paciente, examine las extremidades del miembro con frecuencia para verificar que tengan color, temperatura y sensibilidad normales. Si se observa alguna anormalidad, detenga las mediciones de la presión sanguínea.

12.6 Procedimientos de medición

- 1 Conecte la manguera de aire al monitor y enciéndalo.
- 2 Coloque el brazal de presión sanguínea en el brazo o pierna del paciente y siga las instrucciones a continuación. Asegúrese de que el brazal esté totalmente desinflado.

Coloque el brazal de tamaño adecuado para el paciente (Respecto de la selección del tamaño del brazal, consulte la sección *Accesorios de NIBP*), y asegúrese de que el símbolo " Φ " esté sobre la arteria. Asegúrese de que el brazal no esté demasiado ajustado alrededor del miembro. Si está muy ajustado puede provocar la decoloración y eventual isquemia de la extremidad.

NOTA:

El ancho del brazal debe ser 40% de la circunferencia del miembro (50% para neonatos) o 2/3 de la longitud de la parte superior del brazo. La parte del brazal que se infla debe ser lo suficientemente larga para rodear el 50-80% del miembro. Un tamaño incorrecto del brazal puede generar lecturas erróneas. Si existen dudas respecto del tamaño del brazal, utilice uno más grande.

en el panel

Uso del brazal

- 3 Conecte el brazal a la manguera de aire conectada al monitor.
- 4 Verifique si el tipo de paciente está bien seleccionado. Acceda al menú **Conf Paciente** en **Menú** y seleccione **Info Paciente.** y gire la perilla para seleccionar el **Tipo** requerido.
- 5 Seleccione un modo de medición en el menú **Conf NIBP**. Consulte la sección *Indicaciones de operación* para obtener más detalles.
- 6 Presione el botón 💜 en el panel frontal para iniciar una medición.

12.7 Indicaciones de operación

1 Medición manual

Acceda al menú Conf NIBP y configure el elemento M. Medida en Manual. Presione el botón

en el panel frontal para iniciar una medición manual.

Durante el período inactivo del proceso de medición, presione el botón

frontal en cualquier momento para iniciar una medición manual. Luego presione el botón en el panel frontal para detener la medición manual y el sistema continuará ejecutando el programa de medición automática según el intervalo de tiempo seleccionado.

2 Medición automática

Acceda al menú Conf NIBP y configure el elemento M. Medida, como Auto, luego presione el

botón en el panel frontal para iniciar la medición AUTOMÁTICA según el intervalo de tiempo seleccionado.

3 Medición continua

Acceda al menú **Conf NIBP** y seleccione el elemento **Continuo** para iniciar una medición continua. La medición continua durará 5 minutos.

4 Detener la medición continua

Durante la medición continua, presione el botón VIIniciar en el panel frontal en cualquier

momento para detener la medición continua.

12.8 Corrección de la medición si la extremidad no se encuentra a la altura del corazón

Para corregir la medición si la extremidad no se encuentra a la altura del corazón en el valor mostrado:

Añada 0,75 mmHg (0,10 kPa) por cada centímetro más alto o	Reste 0,75 mmHg (0,10 kPa) por cada centímetro más bajo o
Añada 1,9mmHg (0,25 kPa) por cada pulgada más alta	Reste 1,9mmHg (0,25 kPa) por cada pulgada más baja

12.9 Alarma de NIBP

Cuando la **Conf Alarma** está configurada en **Enc**, la alarma fisiológica se disparará si algún valor de medición de la presión sistólica, presión media o presión diastólica excede el límite de alarma. Los usuarios pueden ajustar el límite de alarma accediendo a **Conf NIBP > Conf Alarma > Alarm SYS/Alarma DIA/Alarma MAP**.

12.10 Reinicio del módulo de NIBP

Cuando el sensado de presión no funciona correctamente y el sistema no brinda un mensaje sobre el problema, seleccione **Reiniciado** en el menú **Manteni Usuario > Mantener NIBP** para activar el procedimiento de autocomprobación y restaurar el sistema debido a un desempeño anormal.

12.11 Calibración de la NIBP

La NIBP no puede ser calibrada por el usuario. Los transductores de presión de brazal deben ser verificados y calibrados, de ser necesario, como mínimo una vez cada dos años por un profesional de mantenimiento calificado. Consulte el manual de mantenimiento para obtener más detalles.

12.12 Prueba de fuga

Esta opción se utiliza para realizar una prueba de fuga de aire del módulo. Gire la perilla para seleccionar la opción **Prueba Fuga** en el menú **Manteni Usuario > Mantener NIBP** para iniciar la prueba de fuga de aire. Cuando se selecciona este elemento, cambiará a **Detener**. Si se selecciona este elemento nuevamente, el sistema detendrá la prueba de fuga de aire. Y el elemento regresa a **Prueba Fuga**.

ADVERTENCIA

Esta prueba neumática, distinta de la especificada en el estándar EN 1060-1, debe ser utilizada por el usuario para determinar simplemente si hay fugas de aire en sistema neumático o el brazal del módulo NIBP. Si al final de la prueba el sistema indica que la vía NIBP tiene fugas de aire, comuníquese con el fabricante para su reparación.

12.12.1 Procedimiento para prueba de fuga

- Conecte bien el brazal con el toma del orificio de aire NIBP.
- Envuelva el brazal alrededor del cilindro rígido de un tamaño adecuado.
- Acceda al menú Manteni Usuario > Mantener NIBP.
- Gire la perilla hacia el elemento **Prueba Fuga** y presione. Luego aparecerá la indicación "**Prueba Fuga**" en la parte inferior del área del parámetro NIBP, lo que indica que el sistema ha comenzado a realizar la prueba neumática.
- El sistema inflará automáticamente el sistema neumático hasta 180 mmHg.
- Después de 20 segundos, el sistema abrirá automáticamente la válvula de desinflado, lo que indica la finalización de la medición neumática.
- Si no aparece ningún indicador en la parte inferior del área del parámetro NIBP, indica que el sistema neumático se encuentra en buen estado y no existen fugas de aire. Sin embargo, si aparece la indicación **Fuga Brazalete**, indica que las mangueras o el brazal pueden tener fugas. En este caso, el usuario debe verificar si hay alguna conexión suelta y/o es necesario reemplazar el brazal. Después de confirmar que las conexiones sean correctas, el usuario debe volver a realizar la prueba neumática. Si el indicador de falla sigue apareciendo, comuníquese con el fabricante para su reparación.

Diagrama de prueba de fuga de aire del sistema de medición de NIBP

Capítulo 13 Monitoreo de Temperatura (TEMP)

13.1 Descripción general

La temperatura (TEMP) del cuerpo se mide mediante una sonda con un termistor como transductor (un semiconductor cuya resistencia cambia con la temperatura) que se puede aplicar en la superficie corporal, en el recto o en la boca.

Se pueden usar dos sondas de TEMP simultáneamente para medir dos valores de TEMP y obtener la diferencia de temperatura. La configuración estándar incluye un sensor para la superficie corporal (axilar) para adultos.

13.2 Información de seguridad sobre TEMP

ADVERTENCIA

- 1 Verifique que la función de detección de fallas del monitor en los cables del sensor de temperatura antes de comenzar la fase de monitoreo. Desenchufe el cable del sensor de temperatura del canal 1 del monitor. La pantalla deberá mostrar el mensaje de error Apag Sensor TEMP T1 y se activará la alarma audible. Repetir la acción y verificar lo mismo en el canal 2.
- 2 Tome el sensor de TEMP y el cable cuidadosamente. Cuando no se los utiliza, debe enrollar la sonda y el cable en forma de círculo. Si se tensa demasiado el alambre dentro del cable puede provocar daños mecánicos a la sonda y al cable.

NOTA:

Los sensores de TEMP descartables sólo pueden utilizarse una vez por paciente.

13.3 Configuración del monitoreo de TEMP

- Si utiliza sensores de TEMP descartables, debe conectar el cable de TEMP en el monitor y luego conectar el sensor al cable. Cuando se emplea un sensor de TEMP reutilizable, puede conectar el sensor directamente al monitor.
- Aplique y asegure los sensores de TEMP en el paciente.
- Encienda el monitor.

Se requieren 2 min ~ 3 min para que la temperatura coporal medida y presentada en la pantalla se corresponda con un valor estable cuando se monitorea de forma oral o rectal y aproximadamente 5 min cuando la temperatura se monitorea en la superficie corporal (axilar).

13.4 Cálculo de la diferencia de temperatura

El monitor puede calcular y mostrar la diferencia entre dos valores de temperatura restando el segundo valor al primero. La diferencia o Temperatura Diferencial se rotula TD.

Capítulo 14 Monitoreo Rápido de Temperatura (Quick Temp)

14.1 Descripción general

La medición rápida de temperatura permite obtener un valor estimado de la temperatura que se mostraría cuando se alcanza el equilibrio térmico entre el sensor de TEMP y el cuerpo humano luego de haber colocado dicho sensor en el sitio de medición hasta que haya una lectura constante disponible; estos tiempos de medición son de aproximadamente tres minutos para mediciones orales y rectales y cinco minutos para mediciones axilares. La temperatura medida en este tiempo sería la temperatura monitorizada. La curva de temperatura obtenida en este proceso sigue una ecuación determinada. Una curva de temperatura aproximada a la real puede obtenerse mediante los datos de temperatura registrados en muestreos anteriores. La temperatura alcanzada en el equilibrio térmico se puede calcular a través de un algoritmo específico basado en la curva obtenida.

El monitor sólo puede medir la temperatura de pacientes adultos y pediátricos. Si el usuario mide la temperatura en un paciente neonatal, el monitor no mostrará datos. El sensor Oral/Axilar para Quick TEMP o el sensor Rectal para Quick TEMP se proveen en la configuración estándar (debe solicitarse esto al proveedor).

14.2 Información de seguridad de Quick TEMP

ADVERTENCIA

- 1 Para garantizar un medición óptima y precisa, siempre confirme que se hayan seleccionado el modo y los límites de alarmas correctos. Cambiar la posición de medición puede llevar a cambiar el límite de alarma.
- 2 Verifique que la función de detección de fallas del monitor en los cables del sensor de temperatura antes de comenzar la fase de monitoreo. Desenchufe el cable del sensor de temperatura del canal 1 del monitor. La pantalla deberá mostrar el mensaje de error SENSOR APAG TEMP y se activará la alarma audible.
- 3 Tome el sensor de TEMP y el cable cuidadosamente. Cuando no se los utiliza, debe enrollar la sonda y el cable en forma de círculo. Si se tensa demasiado el alambre dentro del cable puede provocar daños mecánicos a la sonda y al cable.
- 4 Es necesario calibrar el módulo de temperatura cada dos años (o con la frecuencia que indique el procedimiento establecido por la política de su hospital). Cuando sea necesario calibrar la medición de temperatura, comuníquese con el fabricante.
- 5 Los movmientos del pacientee pueden interferir con la precisión de las lecturas de temperatura oral. Ingerir líquidos calientes o fríos, alimentos, goma de mascar o sustancias mentoladas, cepillarse los dientes, fumar o realizar actividad física extenuante puede afectar las lecturas de temperatura hasta por 20 minutos después de finalizada dicha actividad.

ADVERTENCIA

- 6 No tome la temperatura axilar a través de la ropa del paciente. Es necesario el contacto directo de la superficie metálica del sensor con la piel.
- 7 La punta del sensor puede dañarse si es mordida mientras se toma la temperatura.
- 8 Utilice sensores de TEMP descartables recomendados por EDAN y siga las recomendaciones dadas para limitar la contaminación cruzada entre pacientes. El uso de cualquier otro sensor puede producir errores de medición de temperatura o dar como resultado lecturas imprecisas.
- 9 La medición rápida de temperatura no es adecuada para su uso durante la desfibrilación.

14.3 Procedimiento de medición

14.3.1 Medición de la temperatura oral

1. Asegúrese de que el sensor oral (sensor blanco), el acople de conexión del sensor y la ficha de conexión al monitor estén bien instalados.

- 2. Retire el sensor del acople de conexión.
- 3. Observe que la pantalla indique el modo oral activado (icono que parpadea).

Si este icono no parpadea, presione el botón **Medición Pos** y configúrelo en **Oral** hasta que aparezca el icono corrspondiente.

- 4. Coloque el acople en el sensor.
- 5. Coloque la punta del sensor bien adentro sobre la zona sublingual del paciente como se indica en la siguiente figura.

Posición de medición en la boca

- 6. No permita que el paciente se coloque a sí mismo el sensor en la boca.
- 7. Mantenga el sensor ubicado en la zona correcta, en contacto con el tejido, hasta que la temperatura esté completa.

De ser necesario, repita el procedimiento indicado anteriormente.

NOTA:

- 1 Después de una medición, el usuario debe colocar el sensor en el soporte para sensores y luego retirarlo para iniciar una nueva medición.
- 2 Para garantizar una lectura óptima y precisa, siempre verifique que se ha seleccionado la posición de medición correcta.

14.3.2 Mediciones para temperaturas rectales

1. Asegúrese de que el sensor rectal (sensor rojo), el acople del sensor y la ficha de conexión al monitor estén bien instalados.

- 2. Retire el sensor rojo del acople.
- 3. Observe que la pantalla indique el modo rectal activado (icono que parpadea).
- 4. Coloque el acople en el sensor. Aplique lubricante si es necesario.

5. Separe los glútos e inserte suavemente la sonda sólo 1,5 cm (5/8 pulgada) en adultos y menos en bebés y niños.

Posición de medición en el recto

ADVERTENCIA

La inserción incorrecta del sensor puede provocar la perforación del intestino.

14.3.3 Mediciones de temperaturas axilares

1. Asegúrese de que el sensor oral (sensor blanco), el acople de conexión del sensor y la ficha de conexión al monitor estén bien instalados.

- 2. Retire el sensor del acople de conexión.
- 3. Observe que la pantalla indique el modo axilar activado (icono que parpadea).
- 4. Presione el botón Medición Pos y configúrelo en Axilar hasta que aparezca el icono corrspondiente.
- 4. Coloque el acople en el sensor.
- 6. Remueva si es necesario la ropa para visualizar la axila.
- 7. Evite pliegues en la axila y coloque la punta del sensor en posición vertical lo más alto que pueda como se indica en la siguiente figura.

8. Coloque el brazo al costado del paciente. Mantenga el sensor en esta posición sin mover el brazo del pciente ni el sensor durante el ciclo de medición.

Posición de medición en la axila

NOTA:

- 1 No tome la temperatura axilar a través de la ropa del paciente. Es necesario el contacto directo entre la piel del paciente y el sensor.
- 2 Para obtener una temperatura axilar precisa, utilice la sonda de temperatura blanca.

14.4 Cambio de la unidad de temperatura

Para cambiar la unidad de Temperatura o Unidad Temp por favor:

Seleccione el menú Ajuste Quick TEMP y seleccione Unida en la interfaz.

Seleccione la unidad de medición deseada de la lista emergente.

Capítulo 15 Monitoreo de Presión Invasiva (IBP)

15.1 Descripción general

La Presión Invasiva (IBP) se mide por medio de catéter insertado directamente en el sistema circulatorio. Un transductor de presión conectado al catéter convierte la fuerza mecánica ejercida por la sangre en una señal eléctrica. Esta presión se visualiza gráficamente como presión versus tiempo y/o numéricamente en la pantalla del monitor.

El monitor mide la presión sanguínea directamente de un vaso sanguíneo seleccionado a través de dos o cuatro canales y muestra señales y valores de la presión sanguínea medida (Sistólica, Diastólica y Media).

15.2 Información de seguridad de IBP

ADVERTENCIA

- 1 El operador debe evitar el contacto con las partes conductoras de los accesorios cuando los mismos están conectados o aplicados al paciente.
- 2 Cuando el monitor se utiliza con equipos quirúrgicos de alta frecuencia, se debe evitar que el transductor y los cables tengan una conexión conductora al equipo alta frecuencia. El objetivo es proteger al paciente contra quemaduras.
- 3 No se deben reutilizar el transductor de IBP ni otro accesorio decartable.
- 4 Si algún otro tipo de líquido, distinto de la solución que se va a infundir en la línea de presión o el transductor, se derrama sobre el equipo o sus accesorios o ingresa en el transductor o el monitor, comuníquese con el Centro de servicio del hospital de inmediato.

NOTA:

- 1 Use sólo el transductor de presión indicado en los Accesorios para medir IBP
- 2 Calibre el instrumento cada vez que se utilice un nuevo transductor, o con tanta frecuencia como lo exijan los procedimientos establecidos por la Política de su hospital.

15.3 Procedimientos de monitoreo

Pasos de preparación para la medición de la IBP:

- 1 Enchufe el cable de interfase del transductor de presión en el zócalo correspondiente del monitor y encienda este último.
- 2 Purgue el sistema con solución salina normal. Asegúrese de que el sistema no tenga burbujas de aire.
- 3 Conecte el catéter del paciente a la línea de presión, asegurándose de que no haya aire en el catéter ni en la línea de presión.
- 4 Coloque el transductor de modo que quede al mismo nivel que el corazón del paciente, aproximadamente en la línea media de la axila.
- 5 Para la selección del nombre del rótulo, consulte Seleccionar una presión para monitoreo.

6 Para poner el transductor en cero, consulte Puesta a acero del transductor de presión.

ADVERTENCIA

Si hay burbujas de aire en la línea de presión o el transductor, debe purgar el sistema con la solución que va a infundir.

15.4 Seleccionar una presión para monitoreo

Indíquele al monitor qué presión desea monitorear seleccionando un rótulo de presión. El rótulo es un identificador exclusivo para cada tipo de presión. Cuando selecciona un rótulo, el monitor utiliza la configuración almacenada de ese rótulo, por ejemplo, color, escala de señales y configuraciones de las alarmas. El rótulo también determina qué algoritmo se utiliza para procesar la señal de presión, de modo que un rótulo incorrecto puede llevar a valores de presión incorrectos. Para seleccionar el rótulo, consulte la siguiente tabla:

Rótulo	Descripción
ART	Presión sanguínea arterial
РА	Presión arterial pulmonar
CVP	Presión venosa central
ICP	Presión intracraneal
LAP	Presión auricular izquierda
RAP	Presión auricular derecha
P1-P2	Rótulos de presión alternativos no específicos

15.5 Puesta a cero del transductor de presión

Para evitar lecturas de presión imprecisas, el monitor requiere un cero válido. Ponga a cero el transductor de acuerdo con los procedimientos establecidos por la política de su hospital (como mínimo una vez por día). La puesta a cero se debe realizar:

- Cuando utiliza un transductor o tubuladura nuevo
- Cada vez que vuelve a conectar el cable de interafase del transductor al monitor;
- Si piensa que las lecturas de presión del monitor no son correctas.

Cuando utiliza un módulo de presión, la información de cero se almacena en el módulo.

15.6 Puesta a cero de la medición de presión

El procedimiento de puesta a cero se detalla a continuación:

- 1 Cierre la llave de paso hacia el paciente.
- 2 Ventile el transductor a presión atmosférica, para compensar la presión estática y atmosférica ejercida sobre el transductor.
- 3 En el menú configuración para la presión, seleccione Cero.

4 Cuando observa el mensaje **Cero OK**, cierre la llave de paso a la presión atmosférica y abra la llave de paso al paciente.

15.7 Solución de problemas en la puesta a cero de la presión (Tomando la presión Art, por ejemplo)

El mensaje de estado enumera la causa probable de una calibración no exitosa.

Mensaje	Acción correctiva
FALLA Art CERO	Asegúrese que el transductor no esté conectado al paciente
APAG SENSOR Art, FALLA	Asegúrese de que el transductor no esté desactivado, y luego
SENSOR Art APAG, FALLA	póngalo en cero.
EN DEMO, FALLA	Asegúrese de que el monitor no esté en modo DEMO.
	Comuníquese con el técnico de mantenimiento de ser
	necesario.
PRESIÓN SOBRE RANGO,	Asegúrese de que la llave de paso tenga ventilación la
FALLA	atmósfera. Si el problema persiste, comuníquese con el
PRESIÓN FUERA de RANGO,	técnico de mantenimiento.
FALLA	
FALLA CERO PRESIÓN	Asegúrese de que el transductor tiene ventilación al aire y no
PULSANTE	se encuentre conectado al paciente e intente de nuevo.

15.8 Calibración de presión de la IBP

- 1 La calibración de mercurio debe ser realizada por el departamento de ingeniería biomédica ya sea cada vez que se utiliza un nuevo transductor o con tanta frecuencia como lo indiquen los procedimientos establecidos por la Política de su hospital.
- 2 El propósito de la calibración es garantizar que el sistema proporcione mediciones precisas.
- 3 Antes de iniciar la calibración de mercurio, se debe realizar un procedimiento de puesta a cero.

Para realizar este procedimiento de calibración necesitará los siguientes equipos: Esfigmomanómetro, llave de paso de 3 vías y tubuladura (aproximadamente de 25 cm de longitud).

El procedimiento de calibración es el siguiente:

- 1 Cierre la llave de paso que fue abierta y sometida a presión atmosférica para la calibración del cero.
- 2 Conecte la tubuladura al esfigmomanómetro.
- 3 Asegúrese de que la conexión con el paciente esté cerrada.
- 4 Conecte el conector de 3 vías a la llave de paso de 3 vías que no está conectada al catéter del paciente.
- 5 Abra el puerto de la llave de paso de 3 vías al esfigmomanómetro.
- 6 Seleccione el canal a calibrar en el menú del monitor y seleccione el valor de presión al que se debe ajustar la IBP.
- 7 Infle el manguito del esfigmomanómetro para lograr la que barra de mercurio alcance al valor de presión configurado en el monitor.
- 8 Ajuste repetidamente hasta que el valor en el menú del monitor sea igual al valor de presión indicado por la barra de mercurio.
- 9 Presione el botón Inicio del monior y el dispositivo comenzará a calibrar.
- 10 Espere el resultado de la calibración. Debe tomar las medidas correspondientes en base a la información indicada.
- 11 Después de la calibración, desarme el tubo de presión sanguínea y la válvula de 3 vías conectada.

1: Medidor de presión de mercurio; 2: conector de 3 vías; 3: llave de paso de 3 vías; 4: Transductor de presión; 5: Cable de interfaz del transductor de presión; 6: Monitor

Calibración de IBP

15.9 Solución de problemas en la calibración de presión

Mensaje Acción correctiva APAG SENSOR Art, FALLA Asegúrese de que el sensor no esté apagado, luego inicie la calibración. Comuníquese con el técnico de mantenimiento, de SENSOR Art APAG, FALLA ser necesario. EN DEMO, FALLA Asegúrese de que el monitor no esté en modo DEMO. Comuníquese con el técnico de mantenimiento, de ser necesario. Asegúrese de que seleccionó el valor del transductor en IBP PRESIÓN SOBRE RANGO, FALLA CAL, luego inicie la calibración. Comuníquese con el técnico de mantenimiento, de ser necesario. PRESIÓN **FUERA** de RANGO, FALLA Falla Calibr Presión Pulso Asegúrese de que el valor de presión indicado por el medidor de mercurio no presente cambios. Comuníquese con el técnico de Presión Pulsátil Calibr Falla mantenimiento, de ser necesario.

La línea de estado enumera los probables motivos de una calibración no exitosa.

15.10 Alarma de la IBP

Si Int Alarma se establece en Enc, se activa una alarma fisiológica si alguno de los valores de tensión sistólica, tensión media o tensión diastólica no están comprendidos en los límites de alarma. Para ajustar el límite de alarma, seleccione XX Opciones (XX es el nombre de la etiqueta) > Conf > Alarm SYS > Alarma MAP > Alarm DIA.

Capítulo 16 Monitoreo de Dióxido de Carbono (CO₂)

16.1 Descripción general

El monitor permite realizar el monitoreo de CO_2 por los métodos de medición de flujo lateral o central/principal. El módulo de CO_2 LoFlo se utiliza para la medición lateral y el módulo de CO_2 Capnostat 5 se utiliza para la medición central.

El principio de la medición de CO_2 se basa principalmente en el hecho de que la molécula de CO_2 puede absorber una longitud de onda de 4,3µm correspondiente a los rayos infrarrojos. La intensidad de absorción es proporcional a la concentración de CO_2 en la muestra de aire exhalado del paciente, la concentración de CO_2 se computará de acuerdo con la determinación de la cantidad de luz absorbida por el CO_2 en la muestra del paciente (o la medición de la cantidad de luz que atravesó la muestra).

- La medición por flujo lateral toma una muestra del gas respiratorio con un flujo de muestra constante de la vía respiratoria del paciente y la analiza con un sensor de CO₂ remoto. Puede medir el CO₂ secundario usando la medición de CO₂ incorporada del monitor.
- La medición por flujo principal utiliza un sensor de CO₂ conectado a un adaptador de vía respiratoria insertado directamente en el sistema respiratorio del paciente.

16.2 Información sobre seguridad de CO₂

ADVERTENCIA

- 1 No utilice el dispositivo en un entorno con gas anestésico inflamable.
- 2 El dispositivo debe ser utilizado por personal médico capacitado y calificado que esté autorizado por EDAN.
- 3 El óxido nitroso, niveles elevados de oxígeno, helio, xenón, hidrocarburos halogenados y presión barométrica pueden afectar la medición de CO₂.
- 4 El monitor sufrirá daños si se desconecta cualquier cánula o línea de muestreo del módulo de CO₂, o el tubo de aire/la entrada de aire/la salida de aire se llena de agua u otros materiales.
- 5 La precisión de la medición de CO₂ se verá afectada por los siguientes motivos: vía aérea muy obstruida, fugas en las conexiones de las vías aéreas o variación rápida de la temperatura ambiental.
- 6 Tenga precaución con la descarga electrostática (ESD) y la interferencia electromagnética (EMI) hacia y desde otros equipos.
- 7 En presencia de dispositivos electromagnéticos (por ejemplo, electrocauterizador), el monitoreo del paciente puede verse interrumpido debido a interferencia electromagnética. Los campos electromagnéticos de hasta 20V/m no afectarán negativamente el desempeño del módulo.
- 8 No coloque los cables del sensor ni líneas de muestreo o tubuladuras de modo que pudiera provocar enredo o estrangulación.
- 9 No almacene el módulo de CO₂ a temperaturas inferiores a -40° F (-40° C) o superiores a 158° F (70° C). No opere el módulo de CO₂ a temperaturas inferiores a 32° F (0° C) o superiores a 104° F (40° C).

NOTA:

Una vez que aparece la alarma de batería, no inicie la medición de CO₂, de lo contrario, el monitor puede apagarse debido a la baja capacidad de la batería.

16.3 Procedimientos de monitoreo

16.3.1 Calibrando el cero del sensor

Debe poner o calibrar el cero el sensor cada vez que utilice un nuevo adaptador de vía aérea siguiendo los pasos descriptos a continuación:

- 1 Mantenga el sensor a la temperatura ambiente y alejado de cualquier fuente de CO_2 . Esto incluye el ventilador, el paciente y el operador.
- 2 Seleccione Conf CO₂ y cambie Modo Trab de Medida.
- 3 En el menú Conf CO₂, seleccione Calibr Cero.
- 4 Si el sistema muestra **Cero AG Progreso** brevemente, el proceso se ha realizado correctamente. Una vez finalizada la puesta a cero de la calibración, puede iniciar la monitorización de CO₂. Si el sistema muestra **Resp Detectada** o **Requerimiento Cero**, la puesta a cero no se ha realizado correctamente. Es necesario repetir la puesta a cero de la calibración.

16.3.2 Módulo LoFlo de CO₂

NOTA:

Debe realizar una calibración a cero del sensor según se describe en este procedimiento cada vez que la temperatura ambiente cambia más de 10°C (por ejemplo, durante el transporte).

Módulo LoFlo de CO₂

16.3.2.1 Pasos para la medición

- 1 Conecte el cable del sensor al conector de entrada de CO_2 del monitor. Espere dos minutos para que el sensor se caliente.
- 2 Conecte la cánula, el adaptador de vía aérea o la línea de muestreo según corresponda, al sensor. Se escuchará un clic cuando se lo coloque correctamente.

Conexión al módulo LoFlo

- 3 Para calibrar el cero del sensor, consulte Calibrando el cero del sensor (16.3.1).
- 4 Para pacientes intubados, es necesario utilizar un adaptador de vías aéreas;

Adaptador de vías aéreas

Para pacientes no intubados: Coloque la cánula nasal en el paciente.

Coloque la cánula nasal

NOTA:

- 1 Siempre conecte el adaptador de vías aéreas al sensor antes de insertar el adaptador de vías aéreas en el circuito paciente o de respiración. A la inversa, siempre retire el adaptador de vías aéreas del circuito paciente antes de retirar el sensor.
- 2 Siempre desconecte la cánula, el adaptador de aéreas o la línea de muestreo del sensor cuando no se lo utiliza.

16.3.2.2 Eliminación de gases residuales del sistema

ADVERTENCIA

Anestésicos: Al utilizar la medición de CO₂ por flujo lateral en pacientes que reciben o han recibido anestésicos recientemente, conecte la salida a un sistema de recolección de gases residuales para evitar exponer la personal médico a los anestésicos.

Use un tubo de escape para eliminar el gas de muestra hacia un sistema de recolección de gases residuales. Conéctelo al sensor de flujo lateral en el conector de salida.

16.3.3 Módulo Capnostat 5 de CO₂

NOTA:

Debe realizar una calibración cero según se describe en este procedimiento cada vez que utiliza un nuevo adaptador de vías aéreas.

Módulo Capnostat 5 de CO₂

16.3.3.1 Pasos para la medición

- 1 Conecte el conector del sensor al conector de CO₂ en el monitor.
- 2 Espere dos minutos, permitiendo que el sensor alcance su temperatura de operación y una condición térmica estable.
- 3 Seleccione el adaptador de vías aéreas adecuado y conéctelo al cabezal del sensor. El adaptador de vías aéreas hace clic cuando se lo coloca correctamente.

Conexión del sensor

- 4 Para calibrar el cero del sensor, consulte Calibrando el cero del sensor (16.3.1);
- 5 Instale el adaptador de vías aéreas en el extremo proximal del circuito entre el codo y la sección Y del circuito paciente del respirador o ventilador.

Conexión del adaptador de vías aéreas

ADVERTENCIA

- 1 No se requiere una calibración de rutina realizada por el usuario.
- 2 La precisión se ve afectada por la temperatura y la presión barométrica.
- 3 Está prohibido insertar o extraer el módulo cuando el monitor está en funcionamiento, dado que puede causar inestabilidad en el sistema. Si lo hace accidentalmente, desactive el módulo en el menú de inmediato. El módulo ingresa en modo ESPERA si usted lo vuelve a conectar al monitor que está encendido. Si las lecturas no son precisas, debe calibrar el sensor.

NOTA:

- 1 Reemplace el adaptador de vías aéreas, si se observa exceso de humedad o secreciones en el tubo o si la forma de onda de CO₂ cambia imprevistamente sin observarse un cambio en el estado del paciente.
- 2 Para evitar infecciones, sólo utilice adaptadores de vías aéreas esterilizados, desinfectados o descartables.
- 3 Inspeccione los adaptadores de vías aéreas antes de usarlos. No los utilice si parecen dañados o rotos. Observe la codificación de color del adaptador de vías aéreas para la población de paciente.
- 4 Verifique periódicamente el sensor de flujo y el tubo para detectar exceso de humedad o acumulación de secreciones.

16.3.3.2 Eliminación de gases residuales del sistema

ADVERTENCIA

Anestésicos: Al utilizar la medición de CO₂ por flujo lateral en pacientes que reciben o han recibido anestésicos recientemente, conecte la salida a un sistema de recolección de gases residuales para evitar exponer al personal médico a los anestésicos.

Use un tubo de escape para eliminar el gas muestreado hacia un sistema de recolección de gases residuales. Conéctelo al sensor de flujo central en el conector de salida.

16.4 Configuración de la señal de CO₂

Seleccione el área de señal de CO₂ para abrir el menú de señal de CO₂:

- Configure el Modo en Curva o Llenad según lo desee.
- Configure el **Veloc.** en un valor adecuado en el menu emergente. Cuanto mayor es el valor del barrido, más rápida es la velocidad de barrido.

16.5 Configuración de las correcciones de CO₂

La temperatura, el vapor de agua en la respiración del paciente, la presión barométrica y las

proporciones de O_2 , N_2O y Helio en la mezcla influyen sobre la absorción de CO_2 y por lo tanto en las mediciones. Si los valores visualizados resultan altos o bajos, imprecisos, verifique que el monitor utilice las correcciones de medición adecuadas. Existen las opciones **Presión Baro**, **Compens O**₂, **Balance Gas** y **Agente Anest** en el menú **Otra Conf** del menú **Conf** CO₂ y el usuario puede seleccionar el elemento deseado en función del factor generador de ruido detectado.

16.6 Cambio de alarmas de CO₂

Esto se refiere a alarmas específicas de CO₂. Consulte la sección Alarmas para obtener información general sobre alarmas. Para cambiar la alarma, consulte los siguientes pasos:

- 1 Seleccione el menú Conf CO₂;
- 2 Seleccione **Conf Alarma EtCO₂**, **Conf Alarma FiCO₂** o **Conf Alarm AwRR** para ajustar el límite de alarma. Acerca de cómo ajustar el límite de alarma por favor refiérase a la sección Configuración de límites de alarma.

16.7 Cambio de la alarma de apnea

Esto determina el límite de tiempo después del cual el monitor activa una alarma si el paciente deja de respirar.

- 1 Seleccione el menú Conf CO₂ para abrirlo;
- 2 Seleccione Alarm Apn del menú;
- 3 Seleccione el tiempo de alarma de apnea del menu emergente.

ADVERTENCIA

No se ha establecido la seguridad y la efectividad del método de medición de la respiración en la detección de la apnea, en especial, la apnea del prematuro o la apnea infantil.

Capítulo 17 Monitoreo del Gasto Cardíaco (C.O.)

17.1 Descripción general

La medición del gasto cardiaco (C.O., del inglés Cardiac Output) se efectúa utilizando el método de la termodilución. El monitor puede determinar la temperatura sanguínea del paciente, medir el gasto cardiaco y efectuar el cálculo hemodinámico. Puede administrar una inyección fría mediante el sistema de flujo directo o puede utilizar una jeringa individual. Se pueden efectuar hasta seis mediciones antes de calcular el gasto cardiaco medio (C.O.). El mensaje de aviso que aparece en la pantalla le indicará cuándo debe inyectar.

17.2 Información sobre seguridad del gasto cardíaco (C.O.)

ADVERTENCIA

- 1 Asegúrese de que los accesorios aplicados cumplan con los requerimientos de seguridad de dispositivos médicos.
- 2 Debe evitarse el contacto de los accesorios con objetos metálicos conductores del cuerpo al conectarlos o aplicarlos.

NOTA:

Cada vez que utilice un nuevo cateter de termodilución, tipo Swan-Ganz, ingrese el coeficiente de cálculo del cateter en el campo **Constant** de acuerdo con las instrucciones.

17.3 Procedimientos de monitoreo del gasto cardíaco (C.O.)

1. Enchufe el cable de la interfaz de C.O. en el conector de C.O. del monitor y encienda el equipo.

- 2. Acople los conectores de la sonda de inyección y del catéter de termodilución al cable de interfaz de gasto cardíaco. Luego, abra la ventana de información del paciente para confirmar la altura y el peso del paciente.
- 4. Seleccione la opción MEDIDA C.O. del menú Opciones C.O..
- 5. Puede realizar más de una medición si se requiere.
- 6. Cuando haya completado la medición, ingrese a la ventana **Medida C.O.** en la opción **Resumen** para editar los datos medidos.

Monitor; 2: Catéter de termodilución; 3: Cable del gasto cardíaco;
 Alojamiento del sensor de la solución inyectada; 5: Solución inyectada; 6: Sistema de distribución;
 7: Sonda térmica alineada de la solución inyectada.

Conexiones del sensor del gasto cardíaco (C.O.)

ADVERTENCIA

Asegúrese de que la constante computacional de la medición sea adecuada para el catéter utilizado.

NOTA:

La alarma de temperatura sanguínea no funcionará durante la medida de C.O.. Una vez acabada ésta, volverá a funcionar.

17.4 Ventana de medición del gasto cardíaco (C.O.)

Seleccione el menú **Opciones C.O.** para ingresar a la ventana **Medida C.O.** e iniciar la medición de C.O.. Si el transductor de C.O. no está conectado, el monitor mostrará **No Sensor** en la pantalla.

Ventana Medida C.O.

1	Curva de medición
2	Área de avisos
3	Gasto cardíaco
4	Índice cardiaco
5	Área de superficie corporal
6	Temperatura sanguínea
\bigcirc	Temperatura de la solución inyectada
8	Tiempo de inicio de la medición
9	Teclas de función

Las teclas de función en la ventana Medida C.O. se explican en la siguiente tabla:

Inicio	Inicia una medición
Detener	Si la temperatura sanguínea no se reanuda en un período considerablemente largo, la medición no podrá detenerse automáticamente. Use este botón para detener la medición y mostrar el resultado del cálculo de C.O., CI.
Cancelar	Cancela la medición que se está realizando o cancela el resultado después de la medición.
Impres	Imprime la curva.

Y	Cambia el valor de la escala Y (temperatura). Existen tres modos disponibles: $0 \sim 0.5^{\circ}$ C, $0 \sim 1^{\circ}$ C, $0 \sim 2.0^{\circ}$ C. Ajuste la escala según las diferencias de temperatura. Una escala más pequeña da como resultado una curva más grande.
X	Cambia el valor de la escala X (tiempo). Existen tres modos disponibles: 0~30s, 0~60s. Si se comienza la medición en el nivel 0~30 seg, se cambiará automáticamente al nivel 0~60 seg si la medición no se finaliza en 30 segundos. Tras este cambio, no se podrá hacer ningún ajuste adicional en la escala X.
Resum	Permite ingresar a la ventana Resumen
Salida	Pulse el elemento para salir de Medida C.O. .

17.5 Proceso de medición

La medición del C.O. debe realizarse cuando el mensaje "Listo (Listo para nueva medición)" aparece en la pantalla. Pulse el botón Inicio y comience a inyectar. Durante la medición se muestra la curva de termodilución, la temperatura sanguínea actual y la temperatura de la solución inyectada. El trazado de la curva se detiene automáticamente una vez finalizada la medición y el C.O. y CI (3 y 4 en la figura anterior) se calcularán y se visualizarán en la pantalla. El monitor mostrará el C.O. en el área de parámetros y la hora de inicio de la medición (8 en la figura anterior).

Para garantizar la exactitud de la medición, se sugiere dejar que transcurra un intervalo razonable de tiempo entre dos mediciones consecutivas. La longitud del intervalo se puede definir en el menú Conf C.O. (unidad de tiempo: segundos). El cronómetro de tiempo para el intervalo temporal programado aparecerá en la pantalla. La próxima medición no se puede efectuar hasta que el tiempo alcance el valor cero y aparezca el aviso **Listo (Listo para nueva medición)**.

NOTA:

- 1 Se recomienda especialmente al usuario que inyecte la solución fría de la jeringa dentro de los primeros cuatro segundos después de presionar el botón **Inicio**.
- 2 Se recomienda esperar durante 1 minuto como mínimo (o más, en función de la situación clínica del paciente), antes de comenzar la siguiente medición.

Repita este procedimiento hasta que haya finalizado las mediciones que desea realizar.

Se puede efectuar un máximo de seis mediciones antes de la edición. Si se realizan mediciones adicionales, la primera de cada una de las mediciones se borrará. Si no se selecciona una curva en la ventana de edición para efectuar el cálculo (esto es, si se excluye del cálculo del promedio), la nueva medición ocupará el lugar de la curva.

17.6 Edición del gasto cardíaco (C.O.)

Seleccione el botón **Resum** en el menú **Medida C.O.** para acceder a la pantalla **Resum** como se indica a continuación:

Ventana para edición de C.O.

• Contenido de la pantalla:

1	Seis curvas de las seis mediciones y el valor de C.O.
2	Valor medio de C.O.
3	Valor medio de CI
4	Botón de función de la ventana para edición

Los valores correspondientes a las mediciones seleccionadas se pueden promediar y almacenar en el campo de C.O. del menú HEMODINÁMICA como base para los cálculos hemodinámicos.

17.7 Monitorización de la temperatura sanguínea

La monitorización de la temperatura sanguínea funciona cuando no se efectúa la medición de C.O.. El termistor ubicado en el extremo distal del catéter de flotación de la arteria pulmonar es el que mide la temperatura sanguínea.

La alarma de temperatura sanguínea no funcionará durante la medición de C.O.. Cuando se concluye la medición, la función se reanudará automáticamente.

La temperatura sanguínea actual se muestra en el área de parámetros de C.O..

Situación del catéter de termodilución

17.8 Configuración de la constante computacional

La constante computacional se relaciona con el catéter y el volumen de la solución inyectable Cuando cambie el catéter, ajuste la opción **Constante** en el menú **Conf C.O.** siguiendo la descripción del producto suministrada por el fabricante del cateter.

17.9 Impresión de las mediciones de C.O.

La impresora imprime las mediciones de C.O.. Para imprimir la medición de C.O., seleccione **Impres** en el menú **Medida C.O.**.

17.10 Seteo del modo de medición de la temperatura de inyección (Fuente IT)

Para cambiar la Fuente IT:

- 1 Seleccione Fuente IT en el menú Conf C.O.;
- 2 Seleccione Auto o Manual de la lista;
- Manual: muestra directamente la temperatura de la solución de inyección de IT
- Auto: indica que el sistema obtiene la temperatura de la solución de inyección mediante el muestreo.

Capítulo 18 Monitoreo de Gases Anestésico (AG)

18.1 Descripción general

El monitor utiliza el analizador de gas de flujo lateral ISA (aquí denominado analizador ISA) y el módulo de flujo principal IRMA (aquí denominado módulo IRMA) para monitorizar el gas anestésico. El módulo de AG puede usarse para medir los gases de pacientes adultos, pediátricos y neonatales durante la anestesia, la recuperación y el cuidado respiratorio. Los gases anestésicos incluidos en el software para la medición son el halotano (HAL), isoflurano (ISO), enflurano (ENF), sevoflurano (SEV), desflurano (DES), CO₂ y N₂O.

18.2 Información de seguridad

18.2.1 Información sobre seguridad del analizador ISA

ADVERTENCIA

- 1 Solamente el personal autorizado y entrenado debe utilizar el analizador ISA.
- 2 Use solamente tubos de muestreo Nomoline fabricados por PHASEIN.
- 3 El analizador ISA no debe usarse con agentes anestésicos inflamables.
- 4 Extienda con cuidado el tubo de muestreo para evitar que el paciente se enrede o se estrangule con ellos.
- 5 No vuelva a utilizar los tubos de muestreo desechables.
- 6 No levante el monitor por el tubo de muestreo porque puede desconectarse del monitor y hacer que éste caiga sobre el paciente.
- 7 Los tubos de muestreo desechables usados deben eliminarse de acuerdo con las reglamentaciones locales aplicables a desperdicios sanitarios.
- 8 No utilice los tubos de muestreo para adultos/uso pediátrico con niños, ya que esto puede agregar un espacio muerto al circuito del paciente.
- 9 No utilice los tubos de muestreo para niños con adultos, ya que esto puede causar una resistencia excesiva del flujo.
- 10 No utilice el analizador ISA con inhaladores de dosis medidas o con medicamentos de nebulización, ya que esto puede obturar el filtro de bacterias.
- 11 Verifique que el flujo de muestra del gas no sea demasiado alto para esta categoría de pacientes.
- 12 Debido a que la puesta a cero requiere la presencia de aire ambiental (21% O₂ y 0% CO₂) en el analizador de gas, asegúrese de colocar el analizador ISA en un lugar bien ventilado. Evite respirar cerca del analizador de gas de flujo lateral ISA antes o durante el procedimiento de puesta a cero.
- 13 El tubo de muestreo Nomoline y sus interfaces no son dispositivos estériles. Para evitar daños, no esterilice en autoclave ninguna parte del tubo de muestreo.

ADVERTENCIA

- 14 Nunca esterilice ni sumerja el analizador ISA en líquido.
- 15 Los equipos de comunicaciones móviles y de RF pueden afectar las mediciones. Asegúrese de que el analizador ISA se utilice en el entorno electromagnético que se especifica en este manual.
- 16 El analizador ISA es considerado únicamente como un elemento complementario en el proceso de evaluación del paciente. Debe utilizarse junto con otros medios de evaluación de los síntomas y señales clínicos pertinentes.
- 17 Reemplace el tubo de muestreo si el conector de entrada del tubo de muestreo parpadea en rojo, o si aparece un mensaje de oclusión de Nomoline en la unidad central.
- 18 No se permite realizar ninguna modificación a este equipo sin la autorización del fabricante. En caso de introducir modificaciones a este equipo, deberá realizarse la inspección y pruebas correspondientes para asegurar una operación segura.
- 19 Los analizadores ISA no están diseñados para usarse en entornos de resonancia magnética nuclear (RMN).
- 20 Durante exploraciones RMN el monitor debe colocarse fuera de la sala de RMN..
- 21 El uso de equipo electroquirúrgico de alta frecuencia cerca del monitor puede producir interferencias y mediciones incorrectas.
- 22 No utilice refrigeración ambiente externa del dispositivo ISA.
- 23 No aplique presión negativa al tubo de muestreo Nomoline para eliminar la condensación de agua.
- 24 Una presión positiva o negativa demasiado fuerte en el circuito del paciente puede afectar el flujo de la muestra.
- 25 Los gases de escape deben retornar al circuito del paciente o al sistema de barrido.
- 26 Utilice siempre un filtro de bacterias en el lado evac si el gas de la muestra debe inhalarse nuevamente.
- 27 No coloque el analizador ISA en ninguna posición que pueda caerse sobre el paciente.

PRECAUCIÓN

- 1 Los analizadores ISA deben instalarse de manera segura a fin de evitar daños al equipo.
- 2 No tensione el cable del analizador ISA.
- 3 No opere el analizador ISA fuera del entorno de temperatura de operación especificado.

18.2.2 Información de seguridad del módulo IRMA

ADVERTENCIA

- 1 Solamente el personal autorizado y entrenado debe utilizar la sonda IRMA.
- 2 La sondar IRMA no debe usarse con agentes anestésicos inflamables.
- 3 Los adaptadores de vías aéreas IRMA no deben reutilizarse. Los adaptadores de vías aéreas desechables usados deben eliminarse de acuerdo con las reglamentaciones locales aplicables a desperdicios sanitarios.
- 4 Use solamente células del sensor de oxígeno fabricadas por PHASEIN. Los sensores de oxígeno agotados deben eliminarse de acuerdo con las reglamentaciones locales aplicables a las baterías.
- 5 No utilice el adaptador IRMA para adultos/uso pediátrico con niños, ya que agrega un espacio muerto de 6 ml al circuito del paciente.
- 6 No utilice el adaptador de vías aéreas IRMA con adultos, ya que esto puede causar una resistencia excesiva del flujo.
- 7 Los equipos de comunicaciones móviles y de RF pueden afectar las mediciones. Asegúrese de que la sonda IRMA se utilice en el entorno electromagnético que se especifica en este manual.
- 8 No coloque el adaptador de vías aéreas IRMA entre el tubo endotraqueal y el codo, ya que esto puede permitir que las secreciones del paciente bloqueen las ventanas del adaptador y sean la causa de una operación incorrecta..

9 A fin de evitar que las secreciones y la humedad se acumulen en la ventana o en la salida del sensor de oxígeno, siempre coloque la sonda IRMA en posición vertical con el LED hacia arriba.

- 10 No utilice el adaptador de vías aéreas IRMA con inhaladores de dosis medidas o con medicamentos de nebulización, ya que esto puede afectar la transmisión de luz de las ventanas del adaptador de vías aéreas.
- 11 No intente abrir el conjunto del sensor de oxígeno. El sensor de oxígeno es un producto desechable y contiene un electrolito cáustico y un cable.
- 12 La sonda IRMA es considerada únicamente como un elemento complementario en el proceso de evaluación del paciente. Debe utilizarse junto con otros medios de evaluación de los síntomas y señales clínicos pertinentes.
- 13 La puesta a cero incorrecta de la sonda puede dar como resultado lecturas del gas falsas.
- 14 La selección incorrecta del agente para IRMA AX/OR (identificación no automática del agente) dará como resultado lecturas del agente falsas.
- 15 El uso de IRMA AX (identificación no automática) con mezclas de gas que contengan más de un agente dará como resultado lecturas del agente falsas.
- 16 Reemplace el adaptador si se produce niebla/condensación dentro del adaptador de vías aéreas.
- 17 Use solamente adaptadores de vías aéreas IRMA fabricados por PHASEIN.

PRECAUCIÓN

- 1 No tensione el cable de la sonda.
- 2 No opere la sonda IRMA fuera del entorno de temperatura de operación especificado.
- 3 No deje los sensores de oxígeno agotado en la sonda IRMA, incluso si ésta no se usa.

18.3 Pasos de monitoreo

18.3.1 Pasos de monitoreo del analizador ISA

18.3.1.1 Comprobación previa al uso

Antes de conectar el tubo de muestreo Nomoline al circuito de respiración, haga lo siguiente:

- 1 Conecte el tubo de muestreo al conector de entrada de gas ISA (LEGI).
- 2 Compruebe que el LEGI tenga una luz verde permanente (que indica que el sistema funciona correctamente).
- 3 Para el módulo ISA OR+ e ISA AX+ con la opción O₂ instalada: compruebe que la lectura de O₂ en el monitor sea correcta (21%).
- 4 Respire en el tubo de muestreo y compruebe que se muestren las ondas y valores de CO_2 válidos en el monitor.

- 5 Obstruya el tubo de muestreo con la punta del dedo y espere 10 segundos.
- 6 Compruebe que se visualice una alarma de oclusión y que el LEGI muestre una luz roja parpadeante.
- 7 Si corresponde: compruebe si el circuito del paciente con el tubo de muestreo instalado está bien ajustado.

18.3.1.2 Configuración del sistema del analizador

Si el sistema utiliza el analizador ISA listo para enchufarse y medir, siga las siguientes instrucciones de configuración:

- 1 Conecte el cable de la interfaz del analizador ISA al monitor.
- 2 Conecte un tubo de muestreo Nomoline al conector de entrada del analizador ISA.
- 3 Conecte la salida de la muestra de gas a un sistema de barrido o retorne el gas al circuito del paciente.
- 4 Encienda el monitor.
- 5 Un LED verde indica que el analizador ISA está listo para usarse.
- 6 Realice una verificación según se describe en la sección Comprobación previa al uso.

18.3.1.3 Puesta a cero

El módulo de infrarrojo necesita establecer un nivel de referencia a cero para la medición de los gases de CO_2 , N_2O y agente anestésico. Este tipo de calibración se denomina "puesta a cero".

El analizador ISA realiza la puesta a cero en forma automática cambiando el muestreo de gas del circuito respiratorio al aire ambiental. La puesta a cero se realiza cada 24 horas y tarda menos de 3 segundos en el caso del módulo ISA CO₂, y menos de 10 segundos en el caso del analizador ISA.

Si el analizador ISA cuenta con un sensor de oxígeno, la puesta a cero automática también incluirá la calibración del aire ambiental del sensor de oxígeno.

ADVERTENCIA

- 1 Debido a que la puesta a cero requiere la presencia de aire ambiental (21% O₂ y 0% CO₂) en el analizador ISA, asegúrese de colocar el analizador en un lugar bien ventilado. Evite respirar cerca del analizador ISA antes o durante el procedimiento de puesta a cero.
- 2 El tubo de muestreo debe reemplazarse cada dos semanas, de lo contrario puede obstruirse.

18.3.1.4 Limpieza y mantenimiento

El analizador de gas ISA "listo para enchufarse y medir" debe limpiarse regularmente. Use un paño humedecido en etanol o isopropanol al 70% para limpiar el analizador.

Para evitar que los líquidos de limpieza y el polvo ingresen al analizador de gas ISA a través del conector LEGI, mantenga el tubo e muestreo Nomoline conectado mientras limpia el analizador.

ADVERTENCIA

- 1 Los tubos de muestreo Nomoline no son dispositivos estériles. Para evitar daños, no esterilice en autoclave ninguna parte del tubo de muestreo.
- 2 Nunca esterilice ni sumerja el analizador ISA en líquido.

18.3.1.5 Cálculo de CAM

El valor CAM puede calcularse y representarse utilizando las concentraciones de gas al final de la espiración (Et) de acuerdo con la siguiente fórmula:

$$MAC = \frac{\% Et(AA_1)}{X(AA_1)} + \frac{\% Et(AA_2)}{X(AA_2)} + \frac{\% Et(N_2O)}{100}$$

X (AA): HAL=0,75%, ENF=1,7%, ISO=1,15%, SEV=2,05%, DES=6,0%

NOTA:

La altitud, la edad del paciente y otros factores individuales no se han considerado en la fórmula anterior.

18.3.2 Pasos de monitoreo del módulo IRMA

- 1 Enchufe el conector IRMA en la entrada IRMA y encienda la el equipo.
- 2 Coloque a presión el cabezal del sensor en la parte superior del adaptador de la vías aérea IRMA. Escuchará un clic cuando se haya insertado correctamente.

3 Un LED verde indica que la sonda IRMA está lista para usarse.

4 Coloque el conector macho de 15 mm del adaptador de vía aérea/IRMA a la pieza en Y del circuito de respiración.

5 Coloque el conector hembra de 15 mm del adaptador de vía aérea/IRMA al tubo endotraqueal del paciente.

Alternativamente, conecte el intercambiador de humedad de calor (IHC) entre el tubo endotraqueal del paciente y la sonda IRMA. AL colocar el IHC frente a la sonda IRMA se protege el adaptador de vía aérea de las secreciones y los efectos del vapor de agua y elimina la necesidad de cambiar el adaptador. Además, permite posicionar libremente la sonda IRMA.

6 A menos que la sonda IRMA esté protegida con un IHC, siempre coloque la sonda IRMA con el LED de estado hacia arriba.

18.3.2.1 Instalación de la sonda IRMA

Al conectar la sonda IRMA al circuito de un niño, es importante evitar el contacto directo entre la sonda IRMA y el cuerpo del niño. Si por cualquier motivo la sonda IRMA está en contacto directo con cualquier parte del cuerpo del niño, deberá colocarse un material aislante entre la sonda y el cuerpo.

ADVERTENCIA

La sonda IRMA no debe estar en contacto con la piel por períodos prolongados.

18.3.2.2 Comprobación previa al uso

Antes de conectar el adaptador de vía aérea IRMA al circuito de respiración, verifique la calibración de O_2 , al comprobar que la lectura de O_2 en el monitor es correcta (21%). Consulte la siguiente sección para obtener información sobre cómo se realiza la calibración del aire.

Verifique siempre las lecturas y las ondas del gas en el monitor antes de conectar el adaptador de vía aérea al circuito del paciente.

Compruebe si el circuito del paciente con la sonda IRMA colocada en el adaptador de vía aérea IRMA está bien ajustado.

18.3.2.3 Puesta a cero

ADVERTENCIA

La puesta a cero incorrecta de la sonda puede dar como resultado lecturas del gas falsas.

Para garantizar la alta precisión de las mediciones de la sonda IRMA, deberán seguirse las siguientes recomendaciones de puesta a cero.

La puesta a cero se realiza colocando a presión un nuevo adaptador de vía aérea IRMA en la sonda IRMA, sin conectar el adaptador de vía aérea al circuito del paciente, y utilizando el instrumento principal para transmitir un comando de referencia cero a la sonda IRMA.

Se deberá tener especial cuidado de evitar respirar cerca del adaptador de vía aérea antes o durante el procedimiento de puesta a cero. La presencia de aire ambiental ($21\% O_2 y 0\% CO_2$) en el adaptador de vía aérea IRMA es de vital importancia para una puesta a cero correcta. Si aparece una alarma de "Requerimiento cero" después del procedimiento de puesta a cero, el procedimiento deberá repetirse.

Siempre realice una comprobación previa al uso después de poner a cero la sonda. Deje transcurrir 30 segundos de precalentamiento de las sondas IRMA AX+ después del encendido y de cambiar el adaptador de vía aérea antes de proceder con la puesta a cero.

18.3.2.4 Limpieza

La sonda IRMA puede limpiarse con un paño humedecido con etanol al 70% como máximo o isopropanol al 70% como máximo.

Retire el adaptador de vía aérea IRMA desechable antes de limpiar la sonda IRMA.

PRECAUCIÓN

- 1 La célula del sensor de oxígeno IRMA y los adaptadores de vías aéreas IRMA no son dispositivos estériles. No esterilice los dispositivos en autoclave porque se pueden dañar.
- 2 Nunca esterilice ni sumerja la sonda IRMA en líquido.

18.3.2.5 Cálculo de CAM

El valor CAM puede calcularse y representarse utilizando las concentraciones de gas al final de la espiración (Et) de acuerdo con la siguiente fórmula:

 $MAC = %ET(AA_1)/X(AA_1) + %ET(AA_2)/X(AA_2) + %ET(N_2O)/100$

X(AA): HAL=0,75%, ENF=1,7%, ISO=1,15%, SEV=2,05%, DES=6,0%

18.4 Configuración del modo de trabajo

Existen dos modos de trabajo: **Medida** y **Espera**. Para cambiar el modo de trabajo, consulte los siguientes pasos:

1 Seleccione el menú Conf AG;

2 Seleccione Modo Trab en la interfaz y luego seleccione Medida o Espera en la lista emergente.

18.5 Configuración de alarmas

Por ejemplo, consideremos la alarma de CO_2 . Esto se refiere a alarmas específicas de CO_2 . Consulte el capítulo sobre alarmas para obtener información general acerca de ellas. Para cambiar la alarma, consulte los siguientes pasos:

1 Seleccione el menú Conf CO₂ (AG);

2 Seleccione Conf Alarm EtCO₂ o Conf Alarm FiCO₂ para ajustar el límite de la alarma.

18.6 Configuración del tiempo de alarma de apnea

Esto determina el límite de tiempo después del cual el monitor activa una alarma si el paciente deja de respirar.

1 Seleccione el menú Conf AG para abrir la opción;

2 Seleccione Alarm Apn en el menú;

3 Elija el tiempo de alarma de apnea del menú emergente.

18.7 Estado de funcionamiento del analizador ISA

Un indicador marca el estado de funcionamiento del analizador ISA. Consulte la siguiente tabla para obtener información detallada.

Indicación	Estado
Luz verde permanente	El sistema funciona correctamente
Luz verde parpadeante	Puesta a cero
Luz azul permanente	Agente anestésico presente
Luz roja permanente	Error del sensor
Luz roja parpadeante	Verifique el tubo de muestreo

18.8 Estado de funcionamiento del módulo IRMA

El estado de funcionamiento del módulo IRMA se transmite a través de la sonda IRMA. Consulte la siguiente tabla para obtener información detallada.

Indicación	Estado
Luz verde permanente	El sistema funciona correctamente
Luz verde parpadeante	Puesta a cero
Luz azul permanente	Agente anestésico presente
Luz roja permanente	Error del sensor

18.9 Compensaciones de N₂O y O₂

Los siguientes modelos requieren compensación de O₂: IRMA AX+, IRMA CO₂, ISA AX+, ISA CO₂. Los siguientes modelos requieren compensación de N₂O: IRMA CO₂ e ISA CO₂. Consulte la siguiente tabla para obtener información acerca de los datos de compensación.

Rango O ₂	Conf rango O ₂
0~30 vol%	21
30~70 vol%	50
70~100 vol%	85
Rango N ₂ O	Conf rango N ₂ O
0~30 vol%	0
30~70 vol%	50

18.10 Efectos de la humedad

La presión parcial y el porcentaje de volumen de CO₂, N₂O, O₂ y agentes anestésicos dependen de la cantidad de vapor de agua en el gas medido. La medición de O₂ se calibrará para mostrar 20,8 vol% a temperatura ambiental y nivel de humedad reales, en lugar de mostrar la presión parcial real. El 20,8 vol% de O₂ corresponde a la concentración real de O₂ en aire ambiente con una concentración de 0,7 vol% de H₂O (por ejemplo, a 1013 hPa, esto equivale a 25 °C y 23 % RH). La medición de CO₂, N₂O y agentes anestésicos (por ejemplo, todos los gases medidos con el equipo de medición por infrarrojo) siempre mostrará la presión parcial real al nivel de humedad actual.

En los alvéolos del paciente, el gas de respiración se satura con vapor de agua a temperatura corporal (BTPS).

Cuando el gas de respiración fluye a través de la línea de muestreo, la temperatura del gas se adaptará a la temperatura ambiente antes de llegar al analizador de gas. Debido a que la sección NOMO elimina toda el agua condensada, nada de agua llegará al analizador de gas ISA. La humedad relativa del gas de la muestra será de aproximadamente el 95 %.

Si se requieren valores de CO₂ a BTPS, se puede utilizar la siguiente ecuación:

$$EtCO2(BTPS) = EtCO2 * (1 - \binom{3.0}{Paunb})$$

donde:

 $EtCO_2$ = valor de EtCO₂ enviado desde ISA [vol%]

Pamb = presión ambiental enviada desde ISA [kPa]

3,8 = presión parcial típica del vapor de agua condensado entre el circuito del paciente e ISA [kPa]

EtCO₂ (BTPS) = concentración de gas EtCO₂ a BTPS [vol%]

Se supone que O₂ es el aire ambiente calibrado a un nivel de humedad de 0,7 vol% de H₂O.

Capítulo 19 Congelar

19.1 Descripción general

Al monitorear un paciente, puede congelar las señales que le interesen para analizarlas con cuidado. Por lo general, se puede generar un informe de una onda congelada de 120 segundos como máximo. La función congelar de este monitor tiene las siguientes características:

- Esta función puede activarse en cualquier pantalla operativa.
- Cuando se activa el estado Congelar, el sistema cierra todos los demás menús operativos. Además, el sistema congela todas las ondas que se muestran en el área de señales de la pantalla Base, y también congela las señales de ECG completas y ondas adicionales a la interfaz de ECG completo (si corresponde). No obstante, el área de parámetros se actualiza normalmente.
- Las ondas congeladas pueden informarse e imprimirse.

19.2 Entrada/salida del estado Congelar

19.2.1 Ingresar al estado Congelar

En el estado Congelar desactivado, pulse el botón en el panel de control del monitor para que el sistema salga del menú que se está visualizando (si corresponde). Luego, ingrese al estado Congelar para ver el menú emergente **CONGELA**. En el estado Congelar, todas las demás señales se congelan. Es decir, el sistema no actualiza las demás señales.

19.2.2 Salir del estado Congelar

En el estado Congelar, al ejecutar cualquiera de las siguientes operaciones el sistema saldrá del estado Congelar:

- Seleccione la opción Salida en el menú Congela;
- Pulse nuevamente el botón en el panel de control.
- Ejecute cualquier operación que active el ajuste de la pantalla o que muestre un nuevo menú.

Al salir del estado Congelar, el sistema eliminará este estado, borrará las señales de la pantalla y reanudará la visualización de las señales en tiempo real. En el modo Actualizar pantalla, el sistema barre las señales de izquierda a derecha en el Área de ondas.

Pulse el botón en el panel de control y aparecerá el menú **Congela** en la parte inferior de la pantalla. En forma simultánea el sistema ingresa al estado Congelar.

- Imprimir Onda: puede ajustarse a cualquier onda de 8s, como IBP1, CO2, PLETH, etc. También puede ajustarse en APAG.
- **Resumen**: Se usa para generar un informe de las ondas congeladas.
- Salida: cuando se pulsa este botón el sistema cierra el menú Congelar y sale del estado Congelar.

NOTA:

Si se presiona el botón varias veces en un breve período, aparecerán ondas discontinuas en la pantalla.

19.3 Informe de señales congeladas

Al mover la onda, podrá generar un informe de una onda de 120 segundos antes de que se congele. En el caso de una onda de menos de 60 segundos, la parte restante se muestra como una línea recta. Use la perilla giratoria en el panel de control para mover el cursor hasta la opción **Resumen** en el menú **Congela**. Presione la perilla. Al girar la perilla hacia la izquierda o hacia la derecha, las señales congeladas en la pantalla se moverán hacia un lado o hacia otro según corresponda. A la derecha de la última onda hay una flecha que indica hacia arriba.

Capítulo 20 Informe

El monitor provee datos de tendencia de todos los parámetros durante 120 horas, el almacenamiento de 1200 resultados de mediciones NIBP y 60 eventos de alarma. Este capítulo contiene las instrucciones detalladas acerca de la generación de informes de todos los datos.

20.1 Informe de gráficos de tendencia

- La última tendencia de 1 hora se muestra cada 1 ó 5 segundos.
- La última tendencia de 120 horas se muestra cada 1, 5 ó 10 minutos.

Para generar un informe de gráficos de tendencias, pulse la tecla **Graf Tend** en la pantalla o seleccione **Menú** > **Resumen** > **Graf Tend** y se mostrará la interfaz de gráficos de tendencia.

En el gráfico de tendencias, el eje Y representa el valor de la medición y el eje X representa el tiempo.

20.1.1 Selección de gráficos de tendencia de parámetros específicos

El monitor puede generar informes de gráficos de tendencia de diferentes parámetros. Para cambiar el gráfico de tendencias existente, seleccione **Menú** > **Resumen** > **Graf Tend** y seleccione el nombre del parámetro requerido del menú emergente (como se indica en el texto en rojo de la figura anterior).

20.1.2 Configuración de la resolución

El monitor soporta cinco tipos de resoluciones. Para configurar una resolución apropiada, seleccione Menú > Resumen > Graf Tend y se mostrará una interfaz. Seleccione Resolución en la interfaz para abrir el menú y elegir la resolución apropiada de 1 seg, 5 seg, 1 min, 5 min y 10

min.

20.1.3 Desplazamiento hacia la izquierda y hacia la derecha de la pantalla

No todos los gráficos de tendencia pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia la izquierda y hacia la derecha en forma manual para ver las tendencias de mediciones que no caben en la pantalla seleccionando y pulsando el símbolo \mathbf{x} y \mathbf{y} que aparecen en el gráfico de tendencia.

20.1.4 Conmutación a la tabla de tendencias

El usuario puede conmutar a la interfaz de la tabla de tendencias en la interfaz **Graf Tend**. Para hacerlo, seleccione **Menú** > **Resumen** > **Graf Tend** y luego elija la opción **Tabla Tend** en la interfaz emergente.

20.1.5 Impresión

El monitor puede imprimir las tendencias tabulares de los datos en la ventana de gráficos de tendencia actual. El informe usará las configuraciones de intervalos de tendencia actuales. Para obtener información detallada acerca de la impresión de los gráficos de tendencias, consulte el Capítulo *Impresión*.

20.2 Informe de la tabla de tendencias

Para generar un informe de la tabla de tendencias, pulse la tecla **Tabla Tend** en la pantalla o seleccione Menú > Resumen > Tabla Tend, y se mostrará la tabla de tendencias.

ΝΟΤΑ

El módulo CO₂ y el módulo GAS no pueden medirse al mismo tiempo, por lo tanto, los gráficos de tendencias correspondientes no pueden mostrarse al mismo tiempo.

20.2.1 Configuración de la resolución

El monitor soporta siete tipos de intervalos. Para configurar una resolución apropiada, seleccione **Menú** > **Resumen**> **Tabla Tend** y se mostrará una interfaz. Seleccione **Resolución** para abrir el menú y elegir la resolución apropiada de **1 seg**, **5 seg**, **1 min**, **5 min**, **10 min**, **30 min** y **60 min**.

20.2.2 Desplazamiento en la pantalla

No todas las tablas de tendencia pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia la izquierda y hacia la derecha, hacia arriba y hacia abajo en forma manual para ver las tablas de tendencias de las mediciones que no caben en la pantalla seleccionando y pulsando el símbolo $| \mathbf{M} |$, \mathbf{P} , \mathbf{V} y $| \mathbf{A}$ que aparecen en el gráfico de tendencias.

20.2.3 Conmutación al gráfico de tendencias

El usuario puede conmutar al gráfico de tendencia de la interfaz **Tabla Tend**. Para hacerlo, seleccione **Menú** > **Resumen** > **Tabla Tend** y seleccione la opción **Graf Tend** de la interfaz emergente.

El monitor puede imprimir las tendencias tabulares de los datos en la ventana de gráficos de tendencia actual. El informe usará las configuraciones de intervalos de tendencia actuales. Para obtener información detallada acerca de la impresión de las tablas de tendencias, consulte el Capítulo *Impresión*.

20.3 Informe de mediciones de Presión no invasiva (NIBP)

Para generar un informe de los datos de medición NIBP, seleccione la tecla **Inf NIBP** en la pantalla o seleccione **Menú** > **Resumen** > **Inf NIBP**, y se mostrará la pantalla **Inf NIBP**.

20.3.1 Desplazamiento en la pantalla

No todos los datos de medición pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia arriba y hacia abajo en forma manual para ver los datos de medición que no caben en la pantalla seleccionando y pulsando el símbolo \mathbf{v} v \mathbf{k} que aparecen en la interfaz Inf NIBP.

20.3.2 Impresión

El monitor puede imprimir los datos de medición en la ventana de informe de la NIBP. Para obtener información detallada acerca de la impresión del informe de la NIBP, consulte el Capítulo *Impresión*.

20.4 Informe de alarmas

El monitor puede mostrar hasta 10 eventos técnicos de alarma en la pantalla actual.

Para generar un informe de los datos de alarma, seleccione la tecla **Inf Alarma** en la pantalla o seleccione **Menú** > **Resumen** > **Inf Alarma**, y se mostrará la pantalla **Inf Alarma**.

20.4.1 Desplazamiento en la pantalla

No todos los eventos de alarma pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia arriba y hacia abajo en forma manual para ver los eventos de alarma que no caben en la pantalla seleccionando y pulsando el símbolo \checkmark y \blacklozenge que se muestran en la interfaz **Inf Alarma**.

20.4.2 Selección de un evento de alarma de un parámetro específico

El monitor puede generar informes de eventos de alarma de parámetros específicos. Para ver el evento de alarma de un parámetro específico, seleccione **Menú** > **Resumen** > **Inf Alarm** y seleccione **Tipo Even** para seleccionar el nombre del parámetro requerido del menú emergente.

20.4.3 Configuración del índice de tiempo

El usuario puede configurar el tiempo de finalización del informe de alarma seleccionando la opción **Indc Tiem** que se muestra en la interfaz de informe de alarma.

Si el usuario selecciona **Tiempo Actual** en la interfaz emergente, los eventos de alarma ocurridos antes del tiempo actual se muestran en la interfaz de informe de alarma.

Si el usuario selecciona **Def Usuario**, puede definir la hora del informe configurando el cuadro de tiempo de la interfaz. Los eventos de alarma ocurridos antes del tiempo seleccionado en **Def Usuario** se mostraran en la interfaz de informe de eventos de alarma.

20.5 Informe de arritmia

Seleccione **Conf ECG** > **Análisis ARR** > **Inf ARR** o **Menú** > **Resumen** > **Inf ARR** para abrir la interfaz de informe de arritmia. La interfaz muestra los últimos eventos de arritmia.

20.5.1 Desplazamiento en la pantalla

No todos los eventos de arritmia pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia arriba y hacia abajo en forma manual para ver otros eventos de arritmia que no caben en la pantalla seleccionando y pulsando el símbolo \checkmark y \blacklozenge que se muestran en la interfaz Inf ARR.

20.6 Revisión del diagnóstico de 12 derivaciones

Seleccione **Menú** > **Resumen** > **Inf Estudio** para abrir la interfaz de informe de estudio de 12 derivaciones. Si no hay resultados de estudios, la indicación **No Result Estudio** se mostrará en la interfaz.

	Int	fo Diagnosis			
Análisis de Tiempo	2000-02-01	1 01:03:25	1/1		
ECG12RES_HR	60bpm	EJES P/QRS/	T;	54/44/4 <u>0</u> 0	
PRInterval	176ms	ECG12RE5_F	RV55V1	1.09/0.55m	6
QRSDuration	72ms	ECG12RE5_F	RV55V1_2	1.64mv	
ECG12RES_QTQTC	339/339ms				
Diag códig	Diag resultados				
800	Ritmo sinusoidal				
861	Taquicardia supraventricular				
863	Taquicardia Ventricular				
863	Ta	aquicardia Ve	entricul	ar	
Onda	±	¥	Borrar	Imp	res
		Salida			

20.6.1 Desplazamiento en la pantalla

No todos los resultados de estudios o las ondas pueden mostrarse en la pantalla actual debido a la limitación de espacio en la misma. El usuario puede desplazar la pantalla hacia arriba y hacia abajo en forma manual para ver los resultados de estudios o las ondas que no caben en la pantalla seleccionando y pulsando el símbolo \checkmark y \blacklozenge que se muestran en la interfaz de informe de estudios de 12 derivaciones.

20.6.2 Borrar resultados de diagnóstico

El usuario puede borrar los resultados de estudios que se muestran en la pantalla actual seleccionando **Borrar** en la interfaz.

20.6.3 Conmutación entre las señales y los resultados

El usuario puede generar un informe de las ondas del estudio en la interfaz de resultados de estudios seleccionando la opción **Onda**, y también puede generar un informe de los resultados de estudios en la interfaz de ondas de estudios seleccionando la opción **Result**.

20.6.4 Impresión

El monitor puede imprimir señales o resultados de diagnóstico de 12 derivaciones que se muestran en la pantalla actual. Para hacerlo, pulse **Impres** en la interfaz. Para obtener información detallada acerca de la impresión de las señales o resultados de diagnóstico, consulte el Capítulo *Impresión*.

Capítulo 21 Cálculos y tabla de titulación

El monitor cuenta con la función de cálculo y tabla de titulación. Los cálculos están basados en datos del paciente que no se miden directamente pero son calculados por el monitor cuando se le provee la información adecuada.

El monitor puede realizar lo siguiente: cálculo de droga y cálculo hemodinámico. Para calcular, seleccione **Menú** > **Func Común** > **Dosis droga**.

NOTA:

Esta función de cálculo de droga actúa solamente como una calculadora. Esto significa que el peso del paciente indicado en el menú Cálculo de droga y en el menú Información del paciente son independientes entre sí. Por lo tanto, si el Peso en la opción Cálculo de droga cambia, la Información del paciente no cambiará. Podemos decir que el menú Cálculo de droga es independiente de otros menús del sistema. Cualquier cambio en el menú no afectará otra información acerca del paciente que se está monitoreando actualmente.

21.1 Cálculo de droga

21.1.1 Procedimientos de cálculo

- 1 La ventana de cálculo de droga se muestra seleccionando Menú > Func Común > Dosis droga.
- 2 Seleccione el cuadro emergente correcto de la opción **Droga** y seleccione el nombre de la droga requerida entre las 15 drogas que se indican a continuación. El usuario puede definir el nombre de la **Droga A, Droga B, Droga C, Droga D** y **Droga E**.
 - Droga A, Droga B, Droga C, Droga D y Droga E
 - AMINOFILINA
 - DOBUTAMINA
 - DOPAMINA
 - EPINEFRINA
 - HEPARINA
 - ISUPREL
 - LIDOCAÍNA
 - NIPRIDA
 - NITROGLICERINA
 - PITOCINA
- 3 Luego, el sistema mostrará un grupo de valores por defecto que no pueden considerarse como los resultados del cálculo. El usuario debe ingresar el valor de parámetros correctos según las instrucciones del médico.
- 4 Ingrese el peso del paciente.

- 5 Ingrese el valor de parámetros correctos.
- 6 Confirme si el resultado del cálculo es correcto.

21.1.2 Unidad de cálculo

Cada droga tiene una unidad fija o una serie de unidades que calcular. Entre las mismas series de unidades, las unidades con valores binarios varían con el valor del parámetro ingresado.

Las unidades de cálculo de las drogas se listan de la siguiente manera:

Droga	Unidad
DROGA A, DROGA B, DROGA C, AMINOFILINA, DOBUTAMINA, DOPAMINA, EPINEFRINA, ISUPREL, LIDOCAÍNA, NIPRIDA, NITROGLICERINA	g, mg, mcg
DROGA D, PITOCINA, HEPARINA	Ku, mu
DROGA E	mEq

Cuando el usuario define alguna droga, el operador debe seleccionar Droga A, Droga B, Droga C, Droga D y droga E sobre la base de la serie de unidades.

NOTA:

- 1 El cálculo de la droga se muestra como un valor no válido antes de que el usuario edite el nombre de la droga y el peso del paciente, y el usuario no puede ingresar ningún valor.
- 2 La tasa de goteo y el tamaño de goteo no son válidos en el modo neonatal.

21.2 Tabla de titulación

Después de completar el cálculo de la droga, el usuario puede abrir la opción **Titulación** en la interfaz **Dosis droga**.

El usuario puede cambiar los siguientes elementos en la tabla de titulación:

- Básico
- Paso
- Tipo Dosis

Los datos de la tabla de tendencias variará con estos cambios. El usuario podrá realizar lo siguiente:

- Desplazarse en la pantalla hacia arriba y hacia abajo seleccionando y pulsando el símbolo
 y k que se muestra en el gráfico de tendencias.
- Imprima los datos que se muestran en la ventana actual seleccionando Impres.

Capítulo 22 Impresión

22.1 Información general

El monitor utiliza una impresora térmica de matriz de puntos que puede soportar distintos tipos de impresiones y generar registros con información del paciente, datos de medición, información de señales y datos, etc.

1	Indicador de impresión
2	Tecla de impresión, pulse esta tecla para iniciar o detener la tarea de impresión.
3	Salida del papel
4	Puerta de la impresora

22.2 Funcionamiento de la impresora

- El registro de señales se imprime a una velocidad de 25 mm/s o de 50 mm/s.
- Papel de impresión de 50mm de ancho.
- Puede imprimir hasta tres canales simultaneamente.
- El usuario puede seleccionar la señal y la longitud del registro en tiempo real.
- El usuario establece el intervalo de impresión automática y la señal va de acuerdo con la impresión en tiempo real.

NOTA:

Se sugiere que el usuario no utilice la impresora cuando se muestra el mensaje de batería baja dado que el monitor podría apagarse de forma automática.
22.3 Tipo de impresión

El monitor proporciona varios tipos de impresión en forma de reportes:

- Impresión en tiempo real continuo
- Impresión del tiempo
- Impresión de alarma
- Impresión de tabla o gráfico de tendencias
- Impresión de información de arritmia
- Impresión de titulación y cálculo de droga
- Impresión del historial de NIBP
- Impresión del historial de alarma
- Impresión del resultado del cálculo hemodinámico
- Impresión del estudio de 12 derivaciones

22.4 Inicio y detención de la impresión

Puede iniciar y detener la impresión de las siguientes formas:

Impresión continua en tiempo	Pulse el botón Impres del panel frontal para iniciar la
real	impresión y vuelva a pulsarlo para detenerlo.
Impresión automática	Imprima tres señales seleccionadas en el menú Conf
	Impresión según el intervalo de tiempo de configuración del
	menú Conf Impresión. Se detendrá automáticamente en 8
	segundos.
Impresión de gráficos de	Ingrese a Menú > Resumen > Graf Tend y pulse el botón
tendencias	Imprimir para iniciar la impresión.
Impresión de tablas de	Ingrese a Menú > Resumen > Tabla Tend y pulse el botón
tendencias	Imprimir para iniciar la impresión.
Impresión del historial de NIBP	Ingrese a Menú > Resumen > Inf NIBP y a continuación
	pulse el botón Imprimir para iniciar la impresión.
Impresión de diagnóstico de	Seleccione Imprimir en la interfaz de información de
12 derivaciones	diagnóstico para iniciar la impresión. Para detener la
	impresión, pulse el botón Imprimir en el panel frontal.

La impresora detendrá la impresión en los siguientes casos:

- La tarea de impresión ha terminado.
- No hay papel en la impresora
- Un desperfecto no permite que la impresora funcione correctamente.

NOTA:

Puede pulsar el botón 💈 del panel frontal para detener el proceso de impresión actual.

22.5 Operaciones de la impresora y mensajes de estado

22.5.1 Requisito del papel de impresión

Únicamente se puede utilizar papel de impresión termosensible estándar, de lo contrario es posible que la impresora no funcione, que la calidad de impresión sea mala y que se dañe el cabezal de impresión termosensible.

22.5.2 Funcionamiento correcto

- Cuando la impresora está en funcionamiento el papel de impresión sale de manera continua. No tire del papel hacia afuera con fuerza, de lo contrario podría dañarse la impresora.
- No utilice la impresora sin papel de impresión.

22.5.3 Falta de papel

Cuando se activa la alarma de **Impresora sin papel**, la impresora no puede ponerse en funcionamiento. Introduzca el papel de impresión correctamente.

22.5.4 Sustitución del papel

1 Tire hacia afuera la parte del arco superior de la carcasa de la impresora para liberarla, como se muestra en la siguiente figura.

2 Introduzca un nuevo rollo de papel en la bandeja para papel, con la cara de impresión hacia arriba.

3 Asegúrese de que esté bien colocado y de que el borde esté nivelado.

4 Tire hacia afuera aproximadamente 2 cm de papel y cierre la carcasa de la impresora.

NOTA:

Tenga cuidado cuando introduzca un rollo de papel. Evite dañar el cabezal de impresión termosensible. No deje la tapa de la impresora abierta a menos que esté introduciendo un rollo o resolviendo problemas.

22.5.5 Eliminación de atascos de papel

Si la impresora no funciona correctamente o emite un sonido inusual, debe abrir la carcasa para comprobar si el papel se ha atascado. Elimine el atasco de papel de la siguiente manera:

- Corte el papel de impresión del borde de alimentación.
- Abra la carcasa de la impresora
- Vuelva a introducir el papel.

NOTA:

- 1 Si el monitor no se ha instalado con una impresora indicará **Impresora No Conf** luego de pulsar el botón **Imprimir**.
- 2 No toque el cabezal de impresión termosensible cuando está realizando impresión continua.

Capítulo 23 Otras funciones

23.1 Llamado a enfermería

El monitor cuenta con un puerto dedicado a enfermería que deberá estar conectado a un sistema de llamado de enfermería a través del cable de intefase para el llamador de enfermería para activar la función llamado a enfermería.

Capítulo 24 Uso de la batería

24.1 Indicador de carga de la batería

El indicador con la etiqueta Batería del panel frontal del monitor se ilumina en color verde cuando el monitor recibe alimentación de la batería y en color amarillo cuando esta se está cargando. El indicador no se ilumina cuando el monitor no recibe alimentación o cuando se aplica alimentación de corriente alterna.

24.2 Estado de la batería en la pantalla principal

El estado de la batería muestra el estado de cada batería detectada y la carga de la batería combinada restante, con una estimación del tiempo de monitorización que puede ser provisto por la batería con la carga que posee.

Se puede visualizar un ícono en el ángulo inferior izquierdo de la pantalla para mostrar el estado de carga de la batería, siendo representada con color amarillo el nivel de carga que posee la batería. Cuando el monitor no está equipado con la batería, el estado de la batería se

mostrará con el ícono **en el ícono** que significa sin batería.

El monitor se apagará automáticamente cuando la batería no tenga sufiente carga para alimentarlo. Cuando labatería no tiene suficiente carga para alimentar el equipo se visualizará el ícono

en la pantalla.

Cuando el monitor recibe alimentación de batería, se apaga automáticamente si no hay energía.

24.3 Comprobación del rendimiento de la batería

El rendimiento de las baterías recargables puede deteriorarse con el tiempo. El mantenimiento de la batería tal como se recomienda en este manual puede ayudar a retardar este proceso.

- 1 Desconecte al paciente del monitor y detenga todos los monitoreos y las mediciones.
- 2 Active la alimentación del monitor y cargue la batería durante más de seis horas en forma continua.
- 3 Desconecte el monitor de la alimentación, enciéndalo y déjelo en funcionamiento hasta que se agote la batería y el monitor se apague.
- 4 El tiempo de funcionamiento de la batería refleja su rendimiento.

Si el tiempo de funcionamiento es considerablemente inferior que el tiempo indicado en la especificación, cambie la batería o comuníquese con el personal de servicio.

ADVERTENCIA

- 1 Antes de utilizar la batería de iones de litio recargable (en lo sucesivo denominada batería), asegúrese de leer atentamente el manual de usuario y las medidas de seguridad.
- 2 No conecte entre sí los terminales positivo (+) y negativo (-) con objetos metálicos, y no coloque la batería junto a un objeto metálico, ya que podría provocar un cortocircuito.

ADVERTENCIA

- 3 No desconecte la batería mientras el monitor está funcionando.
- 4 No caliente la batería ni la arroje al fuego.
- 5 No use ni deje la batería cerca del fuego ni de otros lugares en los que la temperatura pueda ser superior a 60°C.
- 6 No sumerja, arroje ni humedezca la batería en agua/agua de mar.
- 7 No destruya la batería: no la perfore con un objeto filoso como una aguja; no la golpee con un martillo, no se pare sobre ella, ni la arroje o la deje caer para provocar una fuerte descarga; no la desarme ni la modifique.
- 8 Utilice la batería sólo en el monitor. No conecte la batería directamente a un toma eléctrico ni a un cargador para encendedores de cigarrillos.
- 9 No suelde el hilo conductor con el terminal de la batería directamente.
- 10 Si el líquido que se filtra de la batería le salpica en los ojos, no los restriegue. Lávelos con abundante agua limpia y consulte a un médico inmediatamente. Si las filtraciones de líquido de la batería le salpican en los ojos o la ropa, lávelos bien con agua potable inmediatamente.
- 11 Manténgalo alejado del fuego inmediatamente después que se detecten pérdidas o mal olor.
- 12 Deje de utilizar la batería si detecta calor anormal, olor, decoloración, deformación o una condición anormal durante el uso, la carga o el almacenamiento. Manténgala alejada del monitor.
- 13 No utilice una batería que tenga una marca o una deformación importante.

24.4 Reemplazo de la batería

Para instalar o reemplazar la batería, siga el procedimiento que se indica a continuación:

- 1 Baje la tapa de la batería para abrirla siguiendo la indicación que se encuentra sobre ella.
- 2 Tire del dispositivo de sujeción metálico hasta que la batería pueda extraerse.
- 3 Introduzca la batería nueva en el compartimiento.
- 4 Coloque el dispositivo de sujeción metálico para acomodar la batería y cierre la tapa.

24.5 Reciclaje de la batería

La batería debe reemplazarse cuando no pueda ya retener carga. Retire la batería vieja del monitor y recíclela adecuadamente siguiendo los procedimientos y/o normas locales.

NOTA:

A fin de prolongar la vida útil de una batería recargable, se recomienda que una vez al mes la misma sea descargarda completamente, sin alimentación de corriente alterna, y cargarla nuevamente hasta que su capacidad máxima esté completa.

24.6 Mantenimiento de la batería

Debe llevar a cabo este proceso en forma periódica para conservar su vida útil.

Descargue la batería por completo una vez por mes. Retire la batería del monitor cuando no se use durante largo tiempo.

Capítulo 25 Cuidado y limpieza

Utilice únicamente las sustancias y los métodos aprobados por EDAN incluidos en este capítulo para limpiar o desinfectar su equipo. La garantía no cubre ningún daño provocado al usar sustancias o métodos no aprobados.

EDAN no es responsable de la eficacia de las sustancias químicas o de los métodos indicados como un recurso para el control de infecciones. Para obtener información acerca del control de infecciones, consulte al responsable del control de infecciones o epidemiólogo del hospital local.

25.1 Generalidades

Mantenga el monitor, los cables y accesorios libres de polvo y suciedad. Para evitar que se dañe el dispositivo, siga el procedimiento que se indica a continuación:

- Realice siempre la dilución de las sustancias según las instrucciones de su fabricante o use la menor concentración posible.
- No sumerja ningún componente del equipo ni ningún accesorio en líquido.
- No vierta líquido sobre el sistema.
- Nunca utilice lija.
- No permita que el líquido se filtre por la carcasa.
- Nunca utilice material abrasivo (como lana de acero o limpiadores de plata).

PRECAUCIÓN

Si derrama líquido sobre el equipo o accidentalmente sumerge al mismo, la batería o accesorios en líquido, comuníquese con su personal de servicio o con el servicio técnico de EDAN.

25.2 Limpieza

ADVERTENCIA

Antes de limpiar el monitor o un sensor, asegúrese de que el equipo esté apagado y desconectado de la línea de alimentación.

25.2.1 Limpieza del monitor

Se recomienda limpiar regularmente la carcasa del monitor y la pantalla. Utilice únicamente detergentes no corrosivos como jabón y agua tibia (40°C/104°F cómo máximo) para limpiar la carcasa del monitor. No utilice solventes fuertes como acetona o tricloroetileno.

Tenga especial cuidado cuando limpie la pantalla del monitor debido a que es más sensible a los métodos agresivos de limpieza que la carcasa. No permita que ingresen líquidos en la carcasa del monitor y evite verterlos sobre el monitor al limpiarlo. No permita que ingresen agua ni líquido de limpieza en los conectores de medición. Limpie la zona circundante, excepto las tomas de los

conectores.

A continuación se dan ejemplos de los desinfectantes que se pueden utilizar para la carcasa de los instrumentos:

- Tensioactivos;
- Agua con amoniaco < 3%;
- Alcohol;

25.2.2 Limpieza de los accesorios

25.2.2.1 Limpieza del cable de ECG y sus latiguillos

NOTA:

- 1 Utilice únicamente las sustancias de limpieza y los desinfectantes recomendados indicados en este documento. El uso de otros puede ocasionar daños (que no están cubiertos por la garantía), reducir la vida útil del producto o comprometer la seguridad.
- 2 Mantenga el cable y los latiguillos libres de polvo y suciedad.
- 3 Nunca sumerja ni moje el cable ECG.
- 4 Inspeccione los cables después de la limpieza.

PRECAUCIÓN

No permita que queden residuos de un agente de limpieza o desinfectante sobre ninguna superficie del equipo. Después de esperar el tiempo correspondiente para que el agente haga efecto (según lo indicado por el fabricante), limpie los residuos con un paño humedecido en agua.

Limpie con un paño sin pelusas humedecido en agua tibia ($40^{\circ}C/104^{\circ}F$) y con las sustancias que se indican a continuación: Nunca utilice solventes fuertes como acetona o tricloroetileno.

Sustancias de limpieza aprobadas

- Jabones suaves
- Tensioactivos (como un agente de limpieza activo)

Se pueden limpiar los cables y los hilos conductores con un paño tibio y húmedo, y jabón suave, o con soluciones de isopropanol.

PRECAUCIÓN

La decisión de esterilizar debe realizarse según los requisitos de su institución considerando el efecto que pudiera tener sobre la integridad del cable o todos sus componentes.

25.2.2.2 Limpieza del brazal de presión no invasvia (NIBP)

Limpie los manguitos con una solución de jabón suave y agua. Si la cubierta requiere una limpieza más rigurosa, retire la cámara de aire primero. Deje que la cubierta se seque totalmente al aire antes de usar el equipo.

Se ha probado que los manguitos resisten los siguientes desinfectantes recomendados: cidex, sporicidin, microzid, isopropanol al 70%, etanol al 70% y buraton líquido.

25.2.2.3 Limpieza del sensor de saturación de oxígeno (SpO₂)

Estos sensores reutilizables se deben limpiar y desinfectar, pero nunca deben esterilizarse. A continuación se enumeran los agentes de limpieza aprobados:

- Detergente suave
- Solución salina (1%)

25.2.2.4 Limpieza de otros accesorios

Para obtener información sobre la limpieza de otros accesorios, comuníquese con los fabricantes.

25.3 Desinfección

ADVERTENCIA

No mezcle soluciones de desinfectantes (como lejía y amoníaco) porque podrían producir gases peligrosos.

A fin de evitar un daño mayor al equipo, sólo se recomienda desinfectarlo cuando sea necesario de acuerdo con el programa de mantenimiento del hospital. Primero se deben limpiar los equipos de desinfección.

Entre los tipos de agentes desinfectantes recomendados se encuentran los siguientes:

- Alcohol
- Aldehído

PRECAUCIÓN

No utilice gas de EtO ni formaldehído para desinfectar el monitor.

25.4 Esterilización

No esterilice el monitor ni los accesorios a menos que sea necesario según la normativa de su hospital.

Limpie y desinfecte los accesorios antes de esterilizarlos utilizando sólo esterilización con gas de óxido de etileno (Eto). No esterilice en autoclave.

ADVERTENCIA

Esterilice y desinfecte los accesorios según lo establecido para evitar las infecciones cruzadas entre los pacientes.

Capítulo 26 Mantenimiento

ADVERTENCIA

- 1 Si el hospital o la institución responsable del uso de este equipo no implementa un programa de mantenimiento satisfactorio, pueden producirse fallos indebidos en el equipo y convertirse en un posible riesgo para la salud.
- 2 Si tiene problemas con el equipo, comuníquese con el personal del servicio técnico, con EDAN o con su proveedor autorizado.

26.1 Inspección

La verificación general del monitor, incluida la comprobación de seguridad, debe llevarse a cabo por personal calificado únicamente cada 24 meses, y después de cada reparación.

Se debe comprobar lo siguiente:

- Si las condiciones del entorno y el suministro de alimentación cumplen los requisitos.
- Si el cable del suministro de alimentación está dañado y se cumplen los requisitos de aislamiento.
- Si el dispositivo y los accesorios están dañados.
- Accesorios especificados.
- Si el sistema de alarmas funciona correctamente.
- Si la impresora funciona correctamente y el papel cumple los requisitos.
- Rendimiento de la bacteria.
- Si todas las funciones de monitoreo se encuentran en buen estado.
- Si la resistencia de conexión a tierra y la corriente de fuga cumplen los requisitos.

Si encuentra algún daño o anormalidad, no utilice el monitor y comuníquese con el Centro de servicio al cliente.

26.2 Tareas de mantenimiento y programa de pruebas

Las siguientes tareas están dirigidas exclusivamente a los profesionales de servicio calificados de EDAN. Si su monitor necesita una prueba de seguridad o rendimiento comuníquese con un profesional de servicio calificado de EDAN. Limpie y desinfecte el equipo para descontaminarlo antes de probarlo o realizar tareas de mantenimiento.

Mantenimiento y programa de	Frecuencia
pruebas	
Verificaciones de seguridad.	Por lo menos una vez cada dos años, o según sea necesario
Pruebas seleccionadas según la	después de cualquier reparación en la que se retire o se
normativa IEC60601-1	reemplace la fuente de alimentación, o si el monitor se ha
	caído.

Manual de usuario del monitor de paciente

Verificación de la sincronización del ECG del monitor y del desfibrilador.	Por lo menos una vez cada dos años o según sea necesario.
Inspección de fugas del sistema de medición de NIBP	Por lo menos una vez cada dos años o según lo especifique la normativa local.
Calibración de la presión del módulo NIBP	Por lo menos una vez cada dos años o según lo especifique la normativa local.
Calibración del modulo de NIBP	Por lo menos una vez cada dos años o según lo especifique la normativa local.
Prueba de rendimiento y de calibración de CO_2	Por lo menos una vez cada dos años o si sospecha que los valores de medición son incorrectos.
Calibración de AG	Por lo menos una vez cada dos años o si sospecha que los valores medidos son incorrectos.
Mantenimiento preventivo de AG	Por lo menos una vez cada dos años o si sospecha que los valores medidos son incorrectos.

Capítulo 27 Garantía y Servicio

27.1 Garantía

EDAN garantiza que sus productos cumplen con las especificaciones estipuladas y que los mismos estarán libres de defectos en materiales y mano de obra que ocurran durante el periodo de la garantía.

La garantía se anula en los siguientes casos:

- a) daños causados durante el embarque y envio.
- b) daños subsiguientes causados por un uso o mantenimiento inapropiado.
- c) daños causados por alteración o reparación de parte de cualquier persona no autorizada por EDAN.
- d) daños causados por accidentes.
- e) reemplazo o retiro de la etiqueta con el número de serie o la etiqueta de fabricación.

Si algún producto cubierto por esta garantía es determinado como defectuoso debido a materiales, componentes, o mano de obra defectuosa, y la solicitud de garantía es realizada dentro del periodo de garantía, EDAN, a su discreción, podrá reparar o reemplazar la(s) parte(s) defectuosa(s) sin costo alguno. EDAN no proveerá un producto substituto para ser usado cuando el producto defectuoso esté siendo reparado.

27.2 Información de contacto

Si usted tiene alguna pregunta sobre el mantenimiento, las especificaciones técnicas o un mal funcionamiento del aparato, contacte a su distribuidor local.

Alternativamente, usted puede enviar un correo electrónico al departamento de servicio de EDAN al: <u>support@edan.com.cn</u>.

Capítulo 28 Accesorios

Para realizar un pedido de accesorios a EDAN, visite <u>www.edan.com.cn</u>o consulte a su representante local de Edan para obtener más información.

ADVERTENCIA

- 1 Nunca vuelva a utilizar transductores, sensores y accesorios descartables que estén destinados exclusivamente a un solo uso o al uso en un único paciente. Si vuelven a utilizarse se puede comprometer la funcionalidad del dispositivo y el rendimiento del sistema y generar un peligro potencial.
- 2 Utilice únicamente los accesorios aprobados por Edan. El uso de accesorios no aprobados por Edan puede comprometer la funcionalidad del dispositivo y el rendimiento del sistema y generar un peligro potencial.
- 3 No utilice un accesorio esterilizado si el paquete está dañado.

NOTA:

Los transductores y sensores tienen una vida útil limitada. Consulte la etiqueta del paquete.

Es posible que no todos los cables que se indican a continuación estén disponibles en todos los países. Consulte acerca de la disponibilidad a su proveedor local de equipos Edan.

28.1 Accesorios de ECG

En la siguiente tabla se enumeran las configuraciones opcionales para el monitor:

Número de pieza	Accesorios
01.57.471002-11	Cable de ECG, IEC, 3 derivaciones, pinza, desfibrilador, PVC
01.57.101027-11	Cable de ECG, AHA, 5 derivaciones, enganche, desfibrilador, PVC
01.57.109100-11	Cable de ECG para el torso, AHA, 10 derivaciones, desfibrilador, TPU
01.57.109101	Cables de ECG para las extremidades, 10 derivaciones, enganche, AHA, 0,9 m, reutilizable (solo se aplica a la serie M80)
01.57.040206	Cable de ECG para el torso, IEC, 5 derivaciones, desfibrilador, TPU
01.57.040207	Cables de ECG para las extremidades, 5 derivaciones, enganche, IEC, 0,9 m, reutilizable
01.57.040208	Cables de ECG para las extremidades, 5 derivaciones, pinza, IEC, 0,9 m, reutilizable
01.57.471022	Cable de ECG para el torso, AHA, 5 derivaciones, desfibrilador, TPU
01.57.471023	Cables de ECG para las extremidades, 5 derivaciones, enganche, AHA, 0,9 m, reutilizable
01.57.471024	Cable de ECG para el torso, IEC, 3 derivaciones, desfibrilador, TPU

01.57.471025	Cable de ECG para las extremidades, 3 derivaciones, pinza, IEC, 0,9 m, reutilizable
01.57.040202-11	Cable de ECG para el torso, IEC, 10 derivaciones, desfibrilador, TPU
01.57.040203	Cables de ECG para las extremidades, 10 derivaciones, enganche, IEC, 0,9 m, reutilizable
01.57.471095-10	Cable de ECG, AHA, 3 derivaciones, enganche, desfibrilador, TPU
01.57.471087-10	Cable de ECG, AHA, 3 derivaciones, pinza, desfibrilador, TPU
01.57.471096-10	Cable de ECG, AHA, 5 derivaciones, enganche, desfibrilador, TPU
01.57.471097-10	Cable de ECG, AHA, 5 derivaciones, pinza, desfibrilador, TPU
01.57.471098-10	Cable de ECG, IEC, 3 derivaciones, enganche, desfibrilador, TPU
01.57.471099-10	Cable de ECG, IEC, 3 derivaciones, pinza, desfibrilador, TPU
01.57.471089-10	Cable de ECG, IEC, 5 derivaciones, enganche, desfibrilador, TPU
01.57.471088-10	Cable de ECG, IEC, 5 derivaciones, pinza, desfibrilador, TPU
11.57.471056	Electrodos de ECG, adultos, desechables, 30 piezas
11.57.471057	Electrodos de ECG, niños, recién nacidos, desechables, 50 piezas
11.57.471060	Electrodos de ECG, adultos, desechables, 100 piezas

28.2 Accesorios de SpO $_2$

Número de pieza	Accesorios
EDAN	
02.01.210119	Sensor de SpO ₂ reutilizable para adultos LEMO SH1 (solo compatible con el módulo de SpO ₂ EDAN) (tipo dactilar, peso del paciente mayor de 40kg)
02.01.210120	Sensor dactilar de SpO ₂ reutilizable para adultos EDAN SH1 (DB9) (tipo dactilar, peso del paciente mayor de 40kg)
01.13.210001	Cable de extensión de SpO ₂ EDAN, DB9 a Lemo, TPU, $2m$
02.01.210122	Sensor de SpO ₂ con punta suave para adultos EDAN SH4, TPU (tipo dactilar, peso del paciente mayor de 50kg)
02.01.210123	Sensor de SpO ₂ con punta de silicona suave para adultos EDAN SH4 (tipo dactilar, peso del paciente mayor de 50kg)
02.01.210121	Sensor de SpO_2 con punta de silicona suave para niños EDAN SH5 (tipo dactilar, peso del paciente de 10 a 50kg)
01.57.040196	Sensor de SpO ₂ desechable para adultos (peso del paciente mayor de 30kg)
01.57.040197	Sensor de SpO ₂ desechable para niños (peso del paciente de 10 a 50kg)
01.57.040198	Sensor de SpO ₂ desechable para bebés (peso del paciente de 3 a 20kg)
01.57.040199	Sensor de SpO ₂ desechable para recién nacidos (peso del paciente menor

	de 3kg)
NELLCOR	
11.15.30043	Sensor de SpO ₂ reutilizable Nellcor para adultos (DS-100A OxiMax) (resistencia a la perfusión baja)
11.15.40096	Sensor de SpO ₂ reutilizable Nellcor para adultos/recién nacidos (OXI-A/N OxiMax)
11.13.30131-11	Cable de prolongación de SpO_2 Nellcor (compatible con módulo de SpO_2 Nellcor OXI-Max y sensor Nellcor)

28.3 Accesorios de NIBP

Número de pieza	Accesorios
EDAN	
01.59.036118	Tubo de NIBP, 3m, gris
01.59.36036	Tubo de NIBP, 3m, negro
01.57.471021	Tubo de NIBP para brazalete neonatal, 3 m
01.57.040210-11	Brazalete de NIBP más grande para adulto, 33 cm-47 cm, reutilizable
01.57.040205-11	Brazalete de NIBP, adulto, 25 cm-35 cm, reutilizable
01.57.040211-11	Brazalete de NIBP, niños, 18 cm-26 cm, reutilizable
01.57.040212-11	Brazalete de NIBP, niños, 10 cm-19 cm, reutilizable
11.57.40074	Brazalete de NIBP más grande para adulto, 33 cm-47 cm, reutilizable
11.57.40029	Brazalete de NIBP, adultos, 25 cm-35 cm, reutilizable
11.57.40020	Brazalete de NIBP, niños, 10 cm-19 cm, reutilizable
11.57.40018	Brazalete de NIBP, niños, 18 cm-26 cm, reutilizable
01.57.471157	Brazalete de NIBP para recién nacidos, 3cm-6cm, desechable, Suntech
01.57.471158	Brazalete de NIBP para recién nacidos, 4cm-8cm, desechable, Suntech
01.57.471159	Brazalete de NIBP para recién nacidos, 6cm-11cm, desechable, Suntech
01.57.471160	Brazalete de NIBP para recién nacidos, 7cm-13cm, desechable, Suntech
01.57.471161	Brazalete de NIBP para recién nacidos, 8cm-15cm, desechable, Suntech
M3600	
01.59.102099	Tubo de NIBP (3,5m) OMRON/MANGUERA PARA BRAZALETE (N. ° 1), largo de 3,5m, CE
01.57.471078-10	BRAZALETE OMRON/BRAZALETE (N. °1), brazo de 12-18cm, ancho de 7 cm, LÁTEX, CE
01.57.471079-10	BRAZALETE OMRON/BRAZALETE (N. °2), brazo de 17-23cm, ancho de 9 cm, LÁTEX, CE

01.57.102100	BRAZALETE OMRON/BRAZALETE (N. °3), brazo de 23-33cm, ancho de 12cm, LÁTEX, CE
01.57.471080-10	BRAZALETE OMRON/BRAZALETE (N. °4), brazo de 30-40cm, ancho de 14cm, LÁTEX, CE
01.57.471081-10	Brazalete desechable para recién nacidos OMRON/BRAZALETE (N. °10), brazo de 3,5-6cm, ancho de 2,5cm, CE
01.57.471082-10	Brazalete desechable para recién nacidos OMRON/BRAZALETE (N. °11), brazo de 5-7,5cm, ancho de 3cm, CE
01.57.471083-10	Brazalete desechable para recién nacidos OMRON/BRAZALETE (N. °12), brazo de 7,5-10,5cm, ancho de 4cm, CE
01.57.471084-10	Brazalete desechable para recién nacidos OMRON/BRAZALETE (N. °13), brazo de 8,5-13cm, ancho de 5cm, CE
01.59.473003-10	Tubo de conexión para brazalete para recién nacidos (solo compatible con tubo desechable y tubo de NIBP para recién nacidos)/MANGUERA PARA BRAZALETE (N. ° 3), largo de 3,5m, CE
11.18.078205	Traba de seguridad
11.23.068003	Lector de código de barras USB
11.57.471019	Adaptador de vía aérea, reutilizable, adultos/niños
11.57.471020	Adaptador de vía aérea, reutilizable, recién nacidos/bebés prematuros
	· · ·

28.4 Accesorios de Temp

Número de pieza	Accesorios
01.57.040185	Sensor de temperatura de piel $(2.252 \text{K}\Omega)$
01.57.040187	Sensor de temperatura de piel $(10 \text{K}\Omega)$
01.57.040184	Sensor de temperatura rectal/oral $(2.252 \text{K}\Omega)$
01.57.040186	Sensor de temperatura rectal/oral ($10K\Omega$)

28.5 Accesorios de Monitoreo de Temperatura rápida

Número de pieza	Accesorios
02.04.110140	Paquete de sensores orales/axilares Quick TEMP
02.04.110139	Paquete de sensores rectales Quick TEMP
11.57.110159	Fundas de sensor (25pcs)

28.6 Accesorios de IBP

Número de pieza	Accesorios
01.57.471014	Cable IBP/cable BD-IBP, se utilizan con el sensor 682000
01.57.471013	Cable IBP Aidehua, se utiliza con el sensor PX260

11.57.40121	Cable interfaz del transductor de presión
01.57.471027-10	Cable IBP YaPei, se utiliza con el sensor 42584
01.57.471028-10	Cable IBP Youta, se utiliza con el sensor DPT-248

28.7 Accesorios de CO₂

Número de pieza	Accesorios
12.08.078137	Módulo/(flujo lateral) de EtCO ₂ Respironics 1022054
12.08.078166	Soporte de montaje de módulo LoFloTM (Respironics 1027730)
11.57.078139	Cánula nasal de CO ₂ descartable para adultos (Respironics 3468ADU-00)
11.57.078140	Cánula nasal de CO ₂ descartable para niños (Respironics 3468PED-00)
11.57.078141	Cánula nasal de CO ₂ descartable para bebés (Respironics 3468INF-00)
11.57.078154	Kit de línea de muestreo descartable con deshumidificador (Respironics 3475-00)
11.15.040143	Módulo 1015928 (flujo principal) de EtCO ₂ Respironics CAPNOSTAT 5
11.59.078155	Adaptador de vía aérea descartable para adultos (6063-00)
11.59.078156	Adaptador de vía aérea descartable para recién nacidos (bebés/niños) (6312-00)
12.08.078138	Componente/(flujo lateral) de EtCO ₂ Respironics 1024956
11.57.078142	Cánula nasal de muestreo de CO ₂ con suministro de O ₂ para adultos
11.57.078143	Cánula nasal de muestreo de CO ₂ con suministro de O ₂ para niños
11.57.078144	Cánula nasal de muestreo de CO ₂ con suministro de O ₂ para bebés
11.57.101019	Cánula de muestreo de CO ₂ nasal/oral para adultos
11.57.101020	Cánula de muestreo de CO2 nasal/oral para niños
11.57.101021	Cánula nasal/oral de muestreo de CO2 con suministro de O2 para adultos
01.12.031598	Kit adaptador de vía aérea para adultos/niños
11.57.078151	Kit adaptador de vía aérea para adultos/niños con deshumidificador
11.57.078152	Kit adaptador de vía aérea para niños/bebés con deshumidificador
11.57.078158	Mascarilla para niños /flujo principal 9960PED-00
11.57.078159	Mascarilla estándar para adultos /flujo principal 9960STD-00
11.57.078160	Mascarilla grande para adultos /flujo principal 9960STD-00
11.57.078161	Clips de soporte para cable de sensor /flujo principal 8751-00
11.12.078162	Banda organizadora /flujo principal 6934-00

28.8 Accesorios de C.O.

Número de pieza	Accesorios	Observación
11.15.40119	Sensor de temperatura de la solución inyectada	BD 684056-SP4042
11.15.40120	Carcasa del sensor de temperatura de la solución inyectada	BD 680006-SP5045
11.57.100175	Jeringa de control	Medex MA387
01.57.471012	Cable principal de gasto cardiaco	Yuanhe 98ME07GB106

28.9 Accesorios de AG

Número de pieza	Accesorios	Observación
11.57.471042-10	Adaptador de vía aérea IRMA, descartable, para adultos/niños, 25 por paquete, PHASEIN	Flujo principal
11.57.471043-10	Nomoline con conector Luer Lock, L=2m, 50ml/min, 25 por paquete, PHASEIN	Flujo lateral
11.57.471048	Bastidor de módulos de conexión de AG	
12.08.208006	Analizador multigas, IRMA AX+,	CAT.NO.200601
12.08.208005	Analizador multigas, ISA AX+,	CAT.NO.800601
12.08.208007	Analizador multigas, ISA OR+,	CAT.NO.800401

28.10 Otros accesorios

Número de pieza	Accesorios	Observación
11.21.064142	Batería recargable de ion litio	14.8V, 2.1Ah
11.21.064143	Batería recargable de ion litio	14.8V, 4.2Ah
01.57.78035	Papel de impresión	
12.01.19084	Impresora térmica	
11.21.64056	Inversor para vehículo	
12.01.30493	Soporte de pared	Sencillo
02.01.30164	Soporte de pared	
02.01.101043	Cesto	Compatible únicamente con soporte de pared MS3R-30164
03.28.101952	Soporte móvil (MT-207)	
02.04.101976	Cesto para soporte móvil (en la parte inferior)	

11.13.114214	Cable de conexión a tierra	
02.01.109592	Mordaza de sujeción	1 juego/paquete
02.01.109636	Mordaza de sujeción	4 juegos/paquetes

A Especificaciones del producto

A.1 Clasificación

Equipo de clase I con fuente de alimentación interna
Grupo I, clase A
ECG (RESP), TEMP, IBP, C.O., Quick Temp CF
SpO ₂ , NIBP, CO ₂ , GAS BF
IPX1 (Sin protección contra las filtraciones de agua si se configura
con el módulo Quick TEMP)
Para obtener más detalles, consulte el capítulo Cuidado y limpieza.
Equipo de funcionamiento continuo
IEC 60601-1:1988+A1+A2, EN 60601-1:1990+A1+A2, IEC/EN
60601-1-2:2001+A1, ISO 9919, ISO 21647, IEC/EN 60601-2-27,
IEC/EN 60601-2-30, IEC/EN 60601-2-34, IEC/EN 60601-2-49,
ANSI/AAMI SP10, IEC/EN 60601-2-25, AAMI/ANSI
EC13, EN12470-4 EN1060-1 EN1060-3, EN1060-4

A.2 Especificaciones físicas

A.2.1 Tamaño y peso

Producto	Tamaño	Peso
iM80	370 mm (L) × 175 mm (Ancho)× 320 mm (Alto)	7 kg
iM50	260 mm (L) \times 140 mm (Ancho) \times 205 mm (Alto)	3,6kg

A.3 Especificaciones del entorno

Temperatura	
Funcionamiento	$+5^{\circ}C \sim +40^{\circ}C$
Transporte y almacenamiento	-20°C ~ +55°C
Humedad	
Funcionamiento	25% ~ 80% (sin condensación)
Transporte y almacenamiento	25% ~ 93% (sin condensación)
Altitud	
Funcionamiento	860 hPa ~ 1060 hPa
Transporte y almacenamiento	700 hPa ~ 1060 hPa

Fuente de alimentación	100V-240V~, 50 Hz/60 Hz
	Corriente =1,0A-0,5A (iM50),
	Corriente =1,4A-0,7A (iM80)
	Fusible T 1,6AL, 250V

A.4 Pantalla

Producto	Pantalla	Mensajes
iM50	Pantalla: 8,4 pulg. color TFT	11 señales máximo
	Resolución: 800×600	Un LED de energía
		Un LED de alarma
		Un LED de carga
		Pitido y sonido de alarma de QRS
iM80	Pantalla: 15 pulg. color TFT	13 señales máximo
	Resolución: 1024 × 768	Un LED de energía
		Dos LED de alarma
		Un LED de carga

A.5 Especificaciones de la batería

iM50	2,1 Ah	Tiempo de operación	180 min (a 25°C, modo de medición de SpO_2 continuo y modo de medición de NIBP automático a un intervalo de 15 minutos; impresión a un intervalo de 10 minutos)
		Tiempo de carga	200 min (el monitor está encendido o en el modo en espera)
	4,2 Ah	Tiempo de operación	420 min (a 25°C, modo de medición de SpO ₂ continuo y modo de medición de NIBP automático a un intervalo de 15 minutos; impresión a un intervalo de 10 minutos)
		Tiempo de carga	380 min (el monitor está encendido o en el modo en espera)
iM80	Una batería (4,2 Ah)	Tiempo de operación	120 min. (a 25°C, modo de medición de SpO ₂ continuo y modo de medición de NIBP automático a un intervalo de 15 minutos; impresión a un intervalo de 10 minutos)
		Tiempo de carga	320 min. (el monitor está encendido o en el modo en espera)
	Dos baterías	Tiempo de operación	240 min. (a 25°C, modo de medición de SpO ₂ continuo y modo de medición de NIBP automático a un intervalo de 15 minutos; impresión a un intervalo de 10 minutos)

(2*4,2 Ah)	Tiempo	de	560	min.	(el	monitor	está	encendido	0	en	el	modo	en
	carga		espe	ra)									

A.6 Impresora

Ancho de impresión	48 mm
Velocidad del papel	25 mm/s, 50 mm/s
Canales	Hasta 3
Tipos de impresión	Impresión en tiempo real de 8 segundos
	Impresión de 8 segundos automática
	Impresión de alarma de parámetros
	Impresión de tendencias
	Impresión de tabla de ajustes de dosis y cálculo de droga

A.7 Informe

Informe de tendencias	
Corta	1 hr, resolución de 1 segundo
Larga	120 hrs, resolución de 1 min.
Informe	1200 Datos de medición de NIBP
	50 Resultados del diagnóstico de 12 derivaciones

A.8 ECG

A.8.1 Monitoreo de 3/5 derivaciones

F	
Modo de derivaciones	3 electrodos: I, II, III
Niodo de derivaciones	5 electrodos: I, II, III, aVR, aVL, aVF, V
Señal	3 electrodos: visualización de señales del canal 1
	5 electrodos: visualización de señales en 2 canales, máx. 7 señales;
Norma de nomenclatura de electrodos	AHA, IEC
Sensibilidad de la pantalla	1,25mm/mV (×0,125), 2,5mm/mV (×0,25), 5mm/mV (×0,5), 10mm/mV (×1), 20mm/mV (×2), ganancia AUTO
Velocidad de Barrido	12,5mm/s, 25mm/s, 50mm/s
Salida analógica de ECG	
Ancho de banda (-3dB)	Diagnóstico: 0,05Hz ~ 100Hz

	Monitor: 0,5Hz ~ 40Hz
	Cirugía: 1Hz ~ 20Hz
Retardo máx. de transmisión	500 ms (en modo de diagnóstico y con el filtro desactivado)
Sensibilidad	1V/mV ±10%
Incremento o rechazo de marcapasos	Sin incremento ni rechazo de marcapasos
Pulso de sincronización con desfibrilador	
Impedancia de salida	$<$ 50 Ω
Retardo de tiempo máx.	35ms
Amplitud	Nivel alto: de 3,5 a 5 V, lo que proporciona un máximo de 1 mA de corriente de salida; Nivel bajo: < 0,5V, lo que proporciona una recepción de un
	máximo de 5 mA de corriente de entrada.
Ancho de pulso	$100 \text{ms} \pm 10\%$
Corriente limitada	Tasa de 15 mA
Tiempos de subida y de bajada	< 1 ms
CMRR (relación de rechazo del modo común)	Diagnóstico: >95dB (el filtro de línea está desactivado) Monitor: >105dB (el filtro de línea está activado) Cirugía: >105dB (el filtro de línea está activado)
Filtro de línea	50Hz/60Hz (el filtro de línea se puede activar o desactivar de forma manual)
Impedancia de entrada diferencial	>5MΩ
Rango de la señal de entrada	±8mV _{PP}
Tolerancia de potencial de equilibrio de electrodos	±500mV
Corriente auxiliar (detección de	Electrodo activo: <100nA
electrodos desconectados)	Electrodo de referencia: <900nA
Corriente de desviación de entrada	≤0,1µA
Tiempo de recuperación tras la desfibrilación	<5s
Corriente de fuga	<10µA
Señal de escala	1mV_{PP} , precisión de ±5%

Ruido del sistema	$<30\mu V_{PP}$			
	Modo de incisión: 300W			
Protocción contro interferencias de	Modo de congelación: 100W			
dispositivos de electrocirugía	Tiempo de restauración: ≤ 10 s			
	Cumple con los requerimientos de normativa EC13-2002 de la ANSI/AAMI, sección 4.1.2.1			
Supresión de ruidos del electrótomo	Probado según el método de prueba de la normativa EC13: 2002 sección 5.2.9.14, cumple con la normativa.			
Pulso del marcapasos				
	El indicador de pulsos del marcapasos marca aquellos casos en los que los pulsos del marcapasos cumplen las siguientes condiciones:			
Indicador de pulso	Amplitud: $\pm 2 \text{ mV} \sim \pm 700 \text{ mV}$			
	Ancho: 0,1 ms ~2 ms			
	Tiempo de ascenso: $10 \mu\text{s} \sim 100 \mu\text{s}$			
	Se rechaza el pulso si cumple los requisitos de la normativa EC13-2002 de la ANSI/AAMI: sección 4.1.4.1 y 4.1.4.3:			
Rechazo de pulso	Amplitud: $\pm 2 \text{ mV} \sim \pm 700 \text{ mV}$			
	Ancho: 0,1 ms ~2 ms			
	Tiempo de ascenso: 10 μs ~100 μs			
Frecuencia cardiaca				
Rango	ADU: 15 bpm ~ 300 bpm			
	PED/NEO: 15 bpm ~ 350 bpm			
Precisión	±1% o 1 bpm, el máximo			
Resolución	1 bpm			
Sensibilidad	\geq 300 μ V _{PP}			
PVC				
Rango	ADU: 0~300 PVCs/ min			
	PED/NEO: 0~350 PVCs/ min			
Resolución	1 PVCs/min			
Valor de ST				
Rango	-2,0 mV ~ +2,0 mV			
Precisión	El máx. de ±0,02 mV o 10% (-0,8 mV ~ +0,8 mV), el máximo			

Resolución	0,01 mV		
Método de obtención del promedi	o de HR		
Método 1	Por lo general, la frecuencia cardiaca se calcula al excluir los valores mínimo y máximo de los 12 intervalos de RR más recientes y obtener el promedio de los 10 intervalos de RR residuales.		
Método 2	Si los tres últimos intervalos consecutivos de RR superan los 1200 ms, se obtiene el promedio de los cuatro últimos intervalos RR para calcular la HR.		
Velocidad de rotación de entrac máxima	la >2,5 V/S		
Rango de ritmo sinusal y de SV			
Taquicardia	ADU: 120 bpm ~ 300 bpm		
	PED/NEO: 160 bpm ~ 350 bpm		
Normal	ADU: 41 bpm ~ 119 bpm		
	PED/NEO: 61 bpm ~159 bpm		
Bradicardia	ADU: 15 bpm ~ 40 bpm		
	PED/NEO: 15 bpm ~ 60 bpm		
Rango del ritmo ventricular			
Taquicardia ventricular	El intervalo de 5 ondas ventriculares consecutivas es inferior a 600 ms		
Ritmo ventricular	El rango del intervalo de ondas ventriculares consecutivas va de 600 ms a 1000 ms		
Bradicardia ventricular	El intervalo de 5 ondas ventriculares consecutivas es superior a 1000 ms		
Hora de inicio para la taquicardia			
Taquicardia ventricular	Ganancia 1,0: 10 s		
1 mV 206bpm	Ganancia 0,5: 10 s		
	Ganancia 2,0: 10 s		
Taquicardia ventricular	Ganancia 1,0: 10 s		
2 mV 195 bpm	Ganancia 0,5: 10 s		
	Ganancia 2,0: 10 s		
Tiempo de respuesta a los	Rango de HR: 80 bpm ~ 120 bpm		
cambios en la frecuencia cardiaca del medidor de la HR	Rango: 7s ~ 8s, el promedio es 7,5s		

	Rango de HR: 80 bp	om ~ 40 bpm			
	Rango: 7s ~ 8s, el promedio es 7,5s				
Rechazo de onda T alta	Excede la amplitud mínima de la onda T de 1,2mV recomendada en la normativa EC13-2002 de la ANSI/AAMI sección 4.1.2.1 (C)				
Precisión del medidor de la frecuencia cardiaca y respuesta	De acuerdo con la normativa EC13-2002 de la ANSI/AAMI, sección 4.1.2.1 e)				
al ritmo irregular	Después de un periodo estable de 20s el valor de HR muestra:				
	Bigeminismo ventrio	cular: 80bpm±1bpm			
	Bigeminismo ventrio	cular con alternancia	lenta: 60bpm±1bpm		
	Bigeminismo ventricular con alternancia rápida: 120bpm±1bpm				
	Sístoles bidirecciona	l: 91bpm±1bpm			
16 análisis de arritmia diferentes	Paciente sin marcapasos		Paciente con marcapasos		
	SÍSTOLE	R en T	SÍSTOLE		
	FIB/TAC Ventri	PVC	TAQUI		
	PAR	TAQUI	BRADI		
	VT>2	BRADI	PNC		
	BIGEMINIA	LATID FALTANTES	PNP		
	TRIGEMINIA	IRR			
	VENT	VBRADI			
Salida analógica de ECG					
	Diagnóstico: 0,05Hz ~ 100Hz				
Ancho de banda (-3dB)	Monitor: 0,5Hz ~ 40Hz				
	Cirugía: 1Hz ~ 20Hz				
Retardo máx. de transmisión	500 ms (en modo de diagnóstico y con el filtro desactivado)				
Sensibilidad	1V/mV ±10%				
Incremento o rechazo de marcapasos	Sin incremento ni rechazo de marcapasos				

Pulso de sincronización con desfibrilador	
Impedancia de salida	$<$ 50 Ω
Retardo de tiempo máx.	35ms
Amplitud	 Nivel alto: de 3,5 a 5 V, lo que proporciona un máximo de 1 mA de corriente de salida; Nivel bajo: < 0,5V, lo que proporciona una recepción de un máximo de 5 mA de corriente de entrada.
Ancho de pulso	$100 \text{ms} \pm 10\%$
Corriente limitada	Tasa de 15 mA
Tiempos de subida y de bajada	< 1 ms

A.8.2 Monitorización de 12 derivaciones

	3 electrodos: I, II, III			
Modo de derivaciones	5 electrodos: I, II, III, aVR, aVL, aVF, V			
widdo de denvaciones	10 electrodos (12 derivaciones): I, II, III, aVR, aVL, aVF, V1, V2,			
	V3, V4, V5, V6			
Señales	3 electrodos: visualización de señales en 1 canal			
	5 electrodos: visualización de señales en 2 canales, máx. 7 señales;			
	10 electrodos (12 derivaciones): visualización de señales en 2 canales, máx. 13 señales.			
Norma de nomenclatura de electrodos	AHA, IEC			
Sensibilidad de la pantalla	1,25mm/mV (×0,125),2,5mm/mV (×0,25), 5mm/mV (×0,5), 10mm/mV (×1), 20mm/mV (×2), ganancia AUTO			
Velocidad de Barrido	12,5mm/s, 25mm/s, 50mm/s			
	Diagnóstico: 0,05Hz ~ 150Hz			
Ancho de banda (-3dB)	Monitor: 0,5Hz ~ 40Hz			
	Cirugía: 1Hz ~ 20Hz			
	Diagnóstico: >95dB (el filtro de línea está desactivado)			
CMRR (relación de rechaz	Monitor: >105dB (el filtro de línea está activado)			
	Cirugía: >105dB (el filtro de línea está activado)			
Filtro de línea	50Hz/60Hz (el filtro de línea se puede activar o desactivar de forma			

Manual de usuario del monitor de paciente

	manual)
Impedancia de entrada diferencial	>5MΩ
Rango de la señal de entrada	±10mV _{PP}
Tolerancia de potencial de equilibrio de electrodos	±500mV
Corriente auxiliar	Electrodo activo: <100nA
(detección de derivaciones desconectadas)	Electrodo de referencia: <900nA
Corriente de desviación de entrada	≤0,1µA
Tiempo de recuperación tras la desfibrilación	<5s
Corriente de fuga	<10µA
Señal de escala	1mV_{PP} , precisión de ±5%
Ruido del sistema	<30µV _{PP}
	Modo de incisión: 300W
Protección contra	Modo de congelación: 100W
interferencias de dispositivos	Tiempo de restauración: ≤ 10 s
de electrocirugia	Cumple con los requerimientos de normativa EC13-2002 de la ANSI/AAMI, sección 4.1.2.1 a)
Supresión de ruidos del	Probado según el método de prueba de la normativa EC13: 2002
electrótomo	sección 5.2.9.14, cumple con la normativa.
Pulso del marcapasos	
	El indicador del marcapasos marca aquellos casos en los que los pulsos del marcapasos cumplen las siguientes condiciones:
Indicador de pulso	Amplitud: $\pm 2 \text{ mV} \sim \pm 700 \text{ mV}$ (12 derivaciones)
	Ancho: 0,1 ms ~2 ms
	Tiempo de ascenso: $10 \ \mu s \sim 100 \ \mu s$

	Se rechaza el pulso si cumple los requisitos de la normativa EC13-2002 de la ANSI/AAMI: sección 4.1.4.1:		
Rechazo de pulso	Amplitud: $\pm 2 \text{ mV} \sim \pm 700 \text{ mV}$		
Rechazo de puiso	Ancho: 0,1 ms ~2 ms		
	Tiempo de ascenso: $10 \ \mu s \sim 100 \ \mu s$		
Frecuencia cardiaca			
Rango de alarma	ADU: 15 bpm ~ 300 bpm		
	PED/NEO: 15 bpm ~ 350 bpm		
Precisión	±1% o 1 bpm, el máximo		
Resolución	1 bpm		
Sensibilidad	\geq 300 μ V _{PP}		
PVC			
Rango	ADU: 0~300 PVCs/ min		
	PED/NEO: 0~350 PVCs/ min		
Resolución	1 PVCs/min		
Valor de ST			
Rango	-2,0 mV ~ +2,0 mV		
Precisión	El máx. de ±0,02 mV o 10% (-0,8 mV ~ +0,8 mV), el máximo		
Resolución	0,01 mV		
Método de obtención del prom	edio de HR		
Método 1	Por lo general, la frecuencia cardiaca se calcula al excluir los valores mínimo y máximo de los 12 intervalos de RR más recientes y obtener el promedio de los 10 intervalos de RR residuales.		
Método 2	Si los tres últimos intervalos consecutivos de RR superan los 1200 ms, se obtiene el promedio de los cuatro últimos intervalos de RR para calcular la HR.		
Velocidad de rotación de entrada máxima	>2,5V/S		
Rango de ritmo sinusal y de SV	7		
Taquicardia	ADU: 120 bpm ~ 300 bpm		
	PED/NEO: 160 bpm ~ 350 bpm		
Normal	ADU: 41 bpm ~ 119 bpm		
	PED/NEO: 61 bpm ~159 bpm		

Bradicardia	ADU: 15 bpm ~ 40 bpm
	PED/NEO: 15 bpm ~ 60 bpm
Rango del ritmo ventricular	
Taquicardia ventricular	El intervalo de 5 ondas ventriculares consecutivas es inferior a 600 ms
Ritmo ventricular	El rango del intervalo de 5 ondas ventriculares consecutivas va de 600 ms a 1000 ms
Bradicardia ventricular	El intervalo de 5 ondas ventriculares consecutivas es superior a 1000 ms
Hora de inicio para la taquicard	ia
Taquicardia ventricular	Ganancia 1,0: 10 s
1 mV 206bpm	Ganancia 0,5: 10 s
	Ganancia 2,0: 10 s
Taquicardia ventricular	Ganancia 1,0: 10 s
2 mV 195 bpm	Ganancia 0,5: 10 s
	Ganancia 2,0: 10 s
Tiempo de respuesta a los	Rango de HR: 80 bpm ~ 120 bpm
cambios en la frecuencia	Rango: 7s ~ 8s, el promedio es 7,5s
	Rango de HR: 80 bpm ~ 40 bpm
	Rango: 7s ~ 8s, el promedio es 7,5s
Rechazo de onda T alta	Excede la amplitud mínima de la onda T de 1,2mV recomendada en la normativa EC13-2002 de la ANSI/AAMI sección 4.1.2.1 (C)
Precisión del medidor de la frecuencia cardiaca y respuesta al ritmo irregular	De acuerdo con la normativa EC13-2002 de la ANSI/AAMI, sección 4.1.2.1 e)
	Después de un periodo estable de 20s el valor de HR muestra:
	Bigeminismo ventricular: 80bpm±1bpm
	Bigeminismo ventricular con alternancia lenta: 60bpm±1bpm
	Bigeminismo ventricular con alternancia rápida: 120bpm±1bpm
	Sístoles bidireccional: 91bpm±1bpm
Análisis de sincronización de ECG de 12 derivaciones (208 tipos de resultados de diagnóstico)	Parámetros promedio de los latidos cardíacos
	Frecuencia cardíaca (bpm)
	Límite de tiempo de la onda P (ms)
	Intervalo PR (ms)

	Intervalo de QRS (ms)	
	QT/QTC (ms)		
	EJE P-QRS-T		
	Paciente sin marcapasos		Paciente con marcapasos
	SÍSTOLE	R en T	SÍSTOLE
	FIB/TAC Ventri	PVC	TAQUI
16 análisis de arritmia	PAR	TAQUI	BRADI
diferentes	VT>2	BRADI	PNC
	BIGEMINIA	LATID FALTANTES	PNP
	TRIGEMINIA	IRR	
	VENT	VBRADI	
Salida analógica de ECG			
Ancho de banda (-3dB)	Diagnóstico: 0,05Hz ~ 100Hz		
	Monitor: 0,5Hz ~ 40Hz		
	Cirugía: 1Hz ~ 20Hz		
Retardo máx. de transmisión	500 ms (en modo de c	liagnóstico y con el filtro	desactivado)
Sensibilidad	1V/mV ±10%		
Incremento o rechazo de marcapasos	Sin incremento ni recl	nazo de marcapasos	
Pulso de sincronización con desfibrilador			
Impedancia de salida	< 50 Ω		
Retardo de tiempo máx.	35ms		
Amplitud	Nivel alto: de 3,5 a 5 V, lo que proporciona un máximo de 1 mA de corriente de salida;		
	Nivel bajo: $< 0,5V$, lo que proporciona una recepción de un máximo de 5 mA de corriente de entrada.		
Ancho de pulso	$100 \text{ms} \pm 10\%$		
Corriente limitada	Tasa de 15 mA		

Manual de usuario del monitor de paciente

Tiempos de subida y de bajada	< 1 ms
Análisis de sincronización de ECG de 12 derivaciones	Parámetros promedio de los latidos cardíacos
	Frecuencia cardíaca (bpm)
	Límite de tiempo de la onda P (ms)
	Intervalo PR (ms)
	Intervalo de QRS (ms)
	QT/QTC (ms)
	EJE P-QRS-T

A.9 RESP

Método	Impedancia entre BD-PI, BD-BI	
Rango de impedancia de la línea	$200\Omega \sim 2500\Omega$ (cables de derivaciones sin resistencia)	
base		
	$2200\Omega \sim 4500\Omega$	
	(cables de derivaciones con una resistencia de 1K Ω)	
Sensibilidad de la medición	0.3Ω (la impedancia de la línea base es 200Ω ~4500 Ω)	
Rango dinámico máximo	Resistencia de 500 Ω , resistencia variable de 3 Ω , sin	
	recortes	
Ancho de banda de la onda	0,2Hz ~ 2,5Hz (-3dB)	
Onda de respiración excitación	$< 300 \mu$ A, sinusoide, 62,8 kHz ($\pm 10\%$)	
Rango de medición de RR y de alarma:		
Adultos	0 rpm ~120 rpm	
Neo/Ped	0 rpm ~150 rpm	
Resolución	1 rpm	
Precisión	±2 rpm	
Selección de la ganancia	×0,25, ×0,5, ×1, ×2, ×3, ×4, ×5	

A.10 NIBP

A.10.1 NIBP para Módulo EDAN

Método	Oscilométrico
Modo	Manual, automático, continuo
Intervalo de medición en modo automático	1/2/3/4/5/10/15/30/60/90/120/240/480 min

Continuo	5min, el intervalo es de 5s	
Tipo de medición	Presión sistólica, presión diastólica, presión media	
Tipo de alarma	SIS, DIA, PAM	
Rango de medición y de alarma		
Modo adulto	SIS: 40 mmHg ~ 270 mmHg	
	DIA: 10 mmHg ~ 215 mmHg	
	PAM: 20 mmHg ~ 235 mmHg	
Modo pediátrico	SIS: 40 mmHg ~ 200 mmHg	
	DIA: 10 mmHg ~ 150 mmHg	
	PAM: 20 mmHg ~ 165 mmHg	
Modo neonato	SIS: 40 mmHg ~ 135 mmHg	
	DIA: 10 mmHg ~ 100 mmHg	
	PAM: 20 mmHg ~ 110 mmHg	
Rango de medición de presión del manguito	0 mmHg ~ 300 mmHg	
Resolución de la presión	1 mmHg	
Error medio máximo	±5 mmHg	
Desviación típica máxima	8 mmHg	
Periodo de medición máximo		
Adultos/niños	120s	
Neonatos	90s	
Periodo de medición típico	30s ~ 45s (según las perturbaciones de HR/movimiento)	
Protección contra presión excesiva	(protección contra presión excesiva doble)	
Adultos	297±3 mmHg	
Niños	240±3 mmHg	
Neonatos	147±3 mmHg	
PR		
Rango de medición	40 bpm ~240 bpm	
Precisión	± 3 bpm o $\pm 3,5$ %, lo que sea mayor	

A.10.2 NIBP para modulo M3600

Método	Oscilométrico			
Modo	Manual, automático, continuo			
Intervalo de medición en modo automático	1/2/3/4/5/10/15/30/60/90/120/240/480 min			
---	--	-------------------	------------------	------------------
Rango de Frecuencia de Pulso	Modo adulto/pediátrico: 40bpm – 200bpm			
	Modo neonato: 40bpm – 240bpm			
Precisión de Frecuencia de Pulso	±2bpm o 2% d	lel valor leído		
Rango de medición y de alarma				
Modo adulto/pediátrico	SIS: 60 mmHg ~ 250 mmHg			
	DIA: 40 mmH	g ~ 200 mmHg		
	PAM: 45 mmHg ~ 235 mmHg			
Modo neonato	SIS: 40 mmHg	g ~ 120 mmHg		
	DIA: 20 mmH	g ~ 90 mmHg		
	PAM: 30 mmHg ~ 100 mmHg			
Tipos de Alarmas	Sis, Dia, MAP			
Resolución	1mmHg			
Precisión de las mediciones				
Error medio máximo	±5mmHg			
Desviación estándar maxima	8mmHg			
Período máximo de medición	Adult: 160s			
	Pediátrico: 180s			
	Neonato: 80s			
Exactitud de la medición				
Error medio máximo	±5 mmHg			
Desviación estándar máxima	8 mmHg			
	Adultos/niños Recién nacidos		5	
	Condición	Falla simple	Condición	Falla simple
	normal	Estado	normal	Estado
Rango de medición de presión del brazalete	300mmHg	330 mmHg	150 mmHg	165 mmHg
Periodo de medición máximo	Menos de 160 s	Menos de 180 s	Menos de 80 s	Menos de 90 s

A.11 SpO₂

A.11.1 SpO2 para Módulo EDAN

Rango de medición	0 ~ 100 %
Resolución	1 %
Precisión	
Adulto (incluye niños)	±2 % (70%~100% SpO ₂)
	Sin definir (0~69% SpO ₂)
Neonatos	±3 % (70%~100% SpO ₂)
	Sin definir (0~69% SpO ₂)
Frecuencia del pulso	
Rango de medición	25bpm ~ 300bpm
Resolución	1bpm
Precisión	±2bpm
Periodo de actualización de datos	1s
Longitud de onda	
Luz roja	660±3 nm
Luz infrarroja	905±5 nm
Energía de la luz emitida	≤15 mW

A.11.2 SpO₂ para Módulo Nellcor (opcional)

Rango de medición		1%~100%
Resolución		1%
	Tipo de sensor	Precisión
	MAX-A, MAX-AL, MAX-N, MAX-P, MAX-I, MAX-FAST	± 2 (70%~100% SpO ₂)
Precisión	OxiCliq A, OxiCliq P, OxiCliq N (adultos), OxiCliq N (recién nacidos) y OxiCliq I	± 2,5 (70%~100% SpO ₂)
	D-YS (bebés a adultos), DS-100A, OXI-A/N y OXI-P/I	± 3 (70%~100% SpO ₂)
	D-YS (incluido sensor	± 3,5 (70%~100% SpO ₂)

auricular tipo D-YSE) y	pinza D-YS
(incluido sensor Spotclip D-YSPD)	tipo

*Cuando el sensor se utiliza en recién nacidos según lo recomendado, el rango de precisión del recién nacido siempre es ±1 mayor que un adulto.

Frecuencia del pulso

Rango de medición	20bpm~300bpm
Resolución	1 bpm
Precisión	± 3 bpm (20bpm~250bpm)
Sensor	Longitud de onda: aproximadamente 660 y 900nm
	Energía de la luz emitida: ≤15mW

A.12 TEMP

Canal	2
Rango de medición y de alarma	$0 ^{\circ}\text{C} \sim 50 ^{\circ}\text{C}(32^{\circ}\text{F} \sim 122^{\circ}\text{F})$
Tipo de sensor	YSI (serie B)
Resolución	0,1°C (0,1°F)
Precisión (sin sensor)	±0,1°C o ±0,2°F
Actualización de tiempo	Cada 1s ~ 2s

A.13 Quick TEMP

Rango de medición	25°C ~ 45°C (77°F~113°F)
0	
Temp de funcionamiento	$10^{\circ}C \sim 40^{\circ}C (50^{\circ}F \sim 104^{\circ}F)$
Temp de funcionamiento	
Tipo de sensor	Sensor oral/axilar sensor rectal
ripo de sensor	School oldraxildi, school leedd
Rango de alarma	35 5°C ~ 42°C (95 9°E~107 6°E)
Rungo de alarma	55,5 C +2 C (55,5 1 107,6 1)
Resolución	0.1°C (0.1°F)
Precisión	$+0.1^{\circ}C(25^{\circ}C \sim 45^{\circ}C)$ o
	$+0.2^{\circ}F(77^{\circ}F_{\sim}113^{\circ}F)$
Tiempo de respuesta	< 60s
riempo de respuesta	
Tiempo de actualización	18~28

A.14 IBP

Rango de medición de presión	De -50 a +300 mmHg
------------------------------	--------------------

Resolución	1 mmHg	
Precisión (sin sensor)	$\pm 2 \%$ o ± 1 mmHg (valor superior)	
Sensor de presión		
Sensibilidad	5 (µV/V/mmHg)	
Impedancia	De 300 a 3.000 Ω	
Frecuencia de respuesta	CC hasta 125 o 40 Hz	
Cero	Rango: ±200 mmHg	
	Precisión: ±1 mmHg	
Intervalo de medición y alarma		
Art	De 0 mmHg a 300 mmHg	
РА	De -6 a +120 mmHg	
CVP/RAP/LAP/ICP	De -10 a +40 mmHg	
P1/P2	De -50 a +300 mmHg	
Volumen por desplazamiento de MSI	4,5 x 10 ⁻⁴ pulg ³ /100 mmHg	

A.15 CO₂

Método	Técnica de absorción de infrarrojos	
Unidad	mmHg, %, kPa	
Rango de medición		
EtCO ₂	De 0 a 150 mmHg	
FiCO ₂	De 3 a 50 mmHg	
FRVa	De 0 a 150 rpm (principal)	
Resolución		
EtCO ₂	1 mmHg	
FiCO ₂	1 mmHg	
FRVa	1 rpm	
Precisión de EtCO ₂	$\pm 2 \text{ mmHg}$, de 0 a 40 mmHg	
	\pm 5% del valor, de 41 a 70 mmHg	
	\pm 8% del valor, de 71 a 100 mmHg	
	\pm 10% del valor, de 101 a 150 mmHg	
Precisión de awRR	± 1 rpm	

Retraso de alarma de apnea	10 s, 15 s, 20 s (predeterminado), 25 s, 30 s, 35 s, 40 s		
Frecuencia de flujo de muestras	50 ml/min		
de gas			
Estabilidad			
Variación a corto plazo	Variación superior a 4 horas < 0,8 mmHg		
Variación a largo plazo	Periodo de 120 horas		
Compensación de O ₂			
Rango	Del 0 al 100%		
Resolución	1 %		
Predeterminado	16%		
Tiempo de respuesta	60 ms		
Precisión de EtCO ₂	±2 mmHg, 0mmHg a 40mmHg		
	\pm 5 % de lectura, 41 a 70mmHg		
	\pm 8 % de lectura, 71 a 100mmHg		
	± 10 % de lectura, 101 a 150mmHg		
Compensación de presión	Configuración del usuario		
barométrica			
Tipo de alarma	EtCO ₂ , FiCO ₂ y AwRR		
Retardo de alarma de apnea	10s, 15s, 20s, 25s, 30s, 35s, 40s y 45s; el valor predeterminado es 20s.		

Efecto del gas y el vapor que interfieren en los valores de medición de EtCO₂:

Gas o vapor	Nivel de gas (%)	Efecto cuantitativo/Comentarios
Óxido nitroso	60	Gas seco y saturado
Halotano	4	0-40 mmHg: ±1mmHg de error adicional
Enflurano	5	41-70 mmHg: ±2,5 % de error adicional
Isoflurano	5	71-100 mmHg: ±4 % de error adicional
Sevoflurano	5	101-150 mmHg: ±5 % de error adicional
Xenón	80	*Error adicional en el peor caso cuando la
Helio	50	compensación de P_B , O_2 , N_2O , agentes anestésicos o helio se selecciona correctamente para los
Desflurano	15	componentes fraccionarios del gas que están realmente presentes.
		Desflurano:
		La presencia de desflurano en la exhalación con

	concentraciones positivamente los hasta un 3 mmHg	mayores valores de adicional a	del dióxido 38 mmI	5% de ca Hg.	sesgará rbono en
	Xenón:				
	La presencia de xe negativamente los hasta un de 5 mmF	enón en la es valores de Hg adiciona	xhalacić dióxido l a 38 m	on sesg de carl mHg.	ará bono en

Presión barométrica en los valores de medición de EtCO₂:

Efecto cuantitativo

Presión barométrica ambiental, operativa

0-40mmHg: ±1mmHg de error adicional

41-70mmHg: ±2,5 % de error adicional

71-100mmHg: ±4 % de error adicional

101-150mmHg: ±5 % de error adicional

*Error adicional en el peor caso cuando la compensación de P_B , O_2 , N_2O , agentes anestésicos o helio se selecciona correctamente para los componentes fraccionarios del gas que están realmente presentes.

A.16 C.O.

Método	Técnica de termodilución
Rango de medición	
C.O.	0,1 L/min ~ 20L/min
ТВ	23°C ~ 43°C(73,4°F~109,4°F)
TI	-1°C ~ 27°C(30,2°F~80,6°F)
Resolución	
C.O.	0,1L/min
TB, TI	+0,1°C (+0,1°F)
Precisión	
C.O.	Para C.O. \geq 4,0 L/min: \pm 5%
	Para C.O. < 4,0 L/min: 0,2 L/min
ТВ	±0,1°C
TI	±0,1°C

NOTA:

Al menos 90% de los datos de C.O. debería encontrarse dentro de la región delimitada y el intervalo de confianza inferior que corresponde a 95% no debería superar un 85%.

A.17 AG

A.17.1 Flujo lateral Phasein

Tipo de módulo	Analizador ISA	Visualización de la concentración de CO ₂ , N ₂ O y dos		
	AX+	agentes anestésicos e identificación automática del		
		agente anestésico (módulo portátil)		
	Analizador ISA	Visualización de la concentración de CO ₂ , O ₂ , N ₂ O y		
	OR+	dos agentes anestésicos e identificación automática del		
		agente anestésico (módulo portátil)		
Parámetros de	CO_2 , N_2O , O_2 , h	halotano (HAL), isoflurano (ISO), enflurano (ENF),		
Medición	sevoflurano (SEV	V), desflurano (DES), awRR, CAM		
Principios de	CO_2 , N_2O , agente	e anestésico: característica de absorción de infrarrojos;		
Medición	O ₂ : método parar	nagnético		
Fracuancia da fluio	$50 \pm 10 \text{ m}/\text{min}$			
de muestreo	30 ± 10 III/IIII			
Modo do troboio	Madiaián an agn			
	Medicion, en esp			
Tiempo de	Iso Modo de	precisión: 10s		
calentamiento	Total Modo de exactitud:1min			
Tiempo de subida	$CO_2 \le 200ms$			
típico	$O_2 \leq 350 ms$			
	$N_2O \leq 350ms$			
	$O_2 \le 450 ms$			
Umbral de agente	$\leq 0,15 \text{ vol}\%$			
anestésico principal				
Umbral de agente	0,2 vol% + 10%			
anestésico				
secundario				
Tiempo de	< 20 segundos (n	ormalmente < 10 segundos)		
identificación del				
agente				
Tiempo de respuesta	< 3 segundos			
Condiciones estándare	es			
GAS	Rango	Precisión		
CO ₂	0 a 15 vol%	$\pm (0,2 \text{ vol}\% + 2\% \text{ de lectura})$		
	15 a 25 vol%	Sin especificar		

N ₂ O	0 a 100 vol	% ±(2 vol	% + 2% de	lect	ura)	
HAL, ENF, ISO	0 a 8 vol %	±(0,15 v	$\pm (0,15 \text{ vol}\% + 5\% \text{ de lectura})$			
	8 a 25 vol 9	vol % Sin especificar				
SEV	0 a 10 vol 9	a 10 vol % $\pm (0,15 \text{ vol}\% + 5\% \text{ de lectura})$				
	10 a 25 vol	% Sin espe	ecificar			
DES	0 a 22 vol 9	6 ±(0,15 v	vol% + 5%	de l	ectura)	
	22 a 25 vol	% Sin espe	ecificar			
O ₂	0 a 100 vol	% ±(1 vol	% + 2% de	lect	ura)	
Todas las condicion	es	I				
Gas	Precisión					
CO ₂	±(0,3kPa +	4% de lectura)				
N ₂ O	$\pm(2kPa+5)$	% de lectura)				
Agentes	±(0,2kPa +	$\pm(0,2kPa + 10\% \text{ de lectura})$				
O ₂	$\pm(2kPa+2)$	$\pm(2kPa + 2 de lectura)$				
Resolución	CO ₂ : 1mml	CO ₂ : 1mmHg				
	awRR: 1rpi	n				
Tiempo de retardo	< 3s					
Retardo de alarma de Appea	20s~60s					
Elemento	Condicione	s de funcionar	viento	Co	ndiciones de a	Imacenamiento
Tomporature (°C)	5 a 50					
		/ · 1	•	-40	$0 \sim 70$	1
Humedad relativa	< 95 % RH	(sin condensac	cion)	5~	100% RH (cor	condensación)
Presión atmosférica	525 ~ 1200	hPa		200	0~1200hPa	
Efectos del gas y el	vapor que inter	rfieren				
Gas o vapor	Nivel de gas	CO_2			Agentes	N ₂ O
		ISA CO ₂	ISA AX+	-		
N ₂ O ⁴⁾	60 vol%	_2)	_1)		_1)	_1)
HAL ⁴⁾	4 vol%	_1)	_1)		_1)	_ 1)
ENF, ISO y SEV ⁴⁾	5 vol%	+8% de	de -1)		_1)	
		lectura ³⁾				
DES ⁴⁾	15 vol%	+12% de lectura ³⁾	_1)		_1)	_1)

$Xe (xenón)^{4}$	80 vol%	-10% de		_1)	_1)
		lectura ³⁾			
He (helio) ⁴⁾	50 vol%	-6% de		_1)	_1)
		lectura ³⁾			
Inhaladores de					
dosis medidas ⁴⁾					
$C_2H_5OH (etanol)^{4)}$	0,3 vol%	_1)	_1)	_1)	_1)
C ₃ H ₇ OH	0,5 vol%	_1)	_ 1)	_1)	_1)
(isopropanol) ⁴⁾					
CH ₃ COCH ₃	1 vol%	_1)	_1)	_1)	_1)
(acetona) ⁴⁾					
$CH_4 (metano)^{4}$	3 vol%	_1)	_1)	_1)	_1)
CO (monóxido de carbono) ⁵⁾	1 vol%	_1)	_1)	_ 1)	_1)
NO (monóxido de	0,02 vol%	_1)	_1)	_1)	_1)
nitrógeno)					
O ₂ ⁵⁾	100 vol%	_2)	_2)	_1)	_1)

Nota 1: interferencia insignificante, efecto incluido en la especificación "Precisión, todas las condiciones" indicada anteriormente.

Nota 2: interferencia insignificante con las concentraciones de N_2O/O_2 configuradas correctamente, efecto incluido en la especificación "Precisión, todas las condiciones" indicada anteriormente.

Nota 3: interferencia al nivel de gas indicado. Por ejemplo, 50 vol% de helio normalmente disminuye las lecturas de CO_2 en un 6%. Esto significa que, si se realiza la medición en una mezcla que contiene 5,0 vol% de CO_2 y 50 vol% de helio, la concentración de CO_2 medida real normalmente será (1-0,06)*5,0vol% =4,7vol% de CO_2 .

Nota 4: de acuerdo con la norma EN ISO 21647.

Nota 5: además de la norma EN ISO 21647. A.17.2 Flujo principal Phasein

Tipo de módulo	IRMA OR	Visualización de la concentración de $CO_2, O_2,$	
		N_2O v un agente anestésico, v sin	
	identificación de agente anestésico		
	IRMA AX+	Visualización de la concentración de CO ₂ ,	
		N ₂ O y dos agentes anestésicos, e	
		identificación de dos agentes anestésicos	
Parámetros de Medición	CO ₂ , N ₂ O, O ₂ , HAL, isot	flurano (ISO), enflurano (ENF), sevoflurano	
	(SEV), desflurano (DES)), awRR, CAM	

Principio de Medición	CO ₂ , N ₂ O, agente anestésico: característica de absorción de infrarrojos				
	O ₂ : batería de oxígeno				
Tiempo de	La identif	ficación automá	ática del agente se ejecuta en 10 segundos.		
calentamiento	Exactitud	total en 1 min			
	(mediciói	n de IRMA AX	/OR HAL: exactitud total en 3 minutos)		
Resolución	$CO_2:1m$	mHg			
	awRR : 1	rpm			
Tiempo de retardo	<3s				
Tiempo de actualización	1 segundo	C			
Tiempo de subida	$CO_2 \le 90$	ms			
	$O_2 \leq 300$	ms			
	$N_2O \leq 30$	Oms			
	HAL, ISO	D, ENF, SEV, I	$DES \le 300 ms$		
Umbral del agente	0,15 vol%				
principal					
Umbral del agente	0,2 vol% + 10% de la concentración de agente total				
del agente	< 20 segundos				
Tiempo de respuesta	< 1 segun	ndo			
Condiciones estándares					
Gas	Rango		Precisión		
CO ₂	0 a 10 vo	1%	$\pm (0,2 \text{ vol}\% + 2\% \text{ de lectura})$		
	10 a 20 v	ol%	Sin especificar		
N ₂ O	0 a 100		$\pm (2 \text{ vol}\% + 2\% \text{ de lectura})$		
	AX/OR	AX+/OR+			
HAL,	0 a 5	0 a 8	$\pm (0,15 \text{ vol}\% + 5\% \text{ de lectura})$		
ISO	5 a 12	8 a 12	Sin especificar		
ENF					
SEV	0 a 8	0 a 10	$\pm (0,15 \text{ vol}\% + 5\% \text{ de lectura})$		
	8 a 15	10 a 15	Sin especificar		
DES	0 a 8	0 a 22	$\pm (0,15 \text{ vol}\% + 5\% \text{ de lectura})$		
	8 a 25	22 a 25	Sin especificar		

O ₂		0	a 100	0 a 100		±(1 vol% -	+ 2%	de lectura)	
Todas las condiciones									
GAS		P	Precisión						
CO ₂		±($\pm (0,3 \text{ vol}\% + 4 \% \text{ de lectura})$						
N ₂ O		±((0,3 vol	% + 4 % de	e lec	tura)			
Agentes		±((0,2 vol	% + 10 %	de le	ctura)			
O ₂		±((2 vol%	+ 2 % de l	ectu	ra)			
Retardo de alar Apnea	ma de	20)s ~ 60s						
Alarma		Pi E	roporcio tAA, Fi	ona alarmas AA, awRR	s de]	EtCO ₂ , FiC	O ₂ , E	tO_2 , FiO_2 , Eth	N_2O , FiN_2O ,
Temperatura (°	C)	10	0 a 40				-20 ~	~ 75	
Humedad relati	va	10) ~95 %	RH (sin c	onde	ensación)	5~1	100 % RH (co	on condensación)
Presión atmosfé	érica	52	525 ~1200 hPa			500 ~ 1200hPa			
Temperatura (°	C)	10	10 a 40			-20 ~ 75			
Humedad relati	va	10) ~ 95%	RH (sin c	onde	ensación)	5 ~ 100 % RH (con condensación)		
Presión atmosfé	érica	52	25 ~ 120	00 hPa			500-	~ 1200hPa	
Efectos del gas	y el v	apor qu	ie interf	ïeren			1		
Gas o vapor		Nivel	de gas	CO ₂			1	Agentes	N ₂ O
				IRMA CO	O_2	IRMA AX	Κ+		
N ₂ O ⁴⁾		60 vol	%	_1 y 2)		_1 y 2)	-	_ 1)	_1)
HAL ⁴⁾		4 vol%	6	_1)		_1)	-	_ 1)	_1)
ENF, ISO y SE	$\mathrm{EV}^{4)}$	5 vol%	6	+8 % de lectura ³⁾		_1)	-	_ 1)	_ 1)
DES ⁴⁾		15 vol	%	+12 % de lectura ³⁾	;	_1)	-	_ 1)	_1)
Xe (xenón) ⁴⁾		80 vol	vol% -10 % de lectura ³⁾				-	_ 1)	_1)
He (helio) ⁴⁾		50 vol) vol% $\begin{array}{ c c c } -6 \% & de \\ lectura^{3} \end{array}$ $\begin{array}{ c c } -^{1} \end{array}$ $\begin{array}{ c } -^{1} \end{array}$				_ 1)		
Inhaladores de dosis medidas ⁴⁾	No se	e debe ı	usar cor	inhalador	es de	e dosis medi	idas.		1
C ₂ H ₅ OH	0,3 v	ol%	_ 1)		_1)		_ 1)		_ 1)

(etanol) ⁴⁾					
C ₃ H ₇ OH	0,5 vol%	_ 1)	_ 1)	_ 1)	_ 1)
(isopropanol) ⁴⁾					
CH ₃ COCH ₃ (acetona) ⁴⁾	1 vol%	_1)	_ 1)	_ 1)	_ 1)
CH ₄ (metano) ⁴⁾	3 vo1%	_1)	_ 1)	_ 1)	_ 1)
CO (monóxido de carbono) ⁵⁾	1 vol%	_ 1)	_ 1)	_ 1)	_ 1)
O ₂ ⁵⁾	100 vol%	_1 y 2)	_1 y 2)	_ 1)	_ 1)

Nota 1: interferencia insignificante, efecto incluido en la especificación "Precisión, todas las condiciones" indicada anteriormente.

Nota 2: en el caso de las sondas que no midan N_2O u O_2 , las concentraciones se deben configurar desde el monitor. (IRMA CO_2 no mide N_2O ni O_2 . IRMA AX+ no mide O_2).

Nota 3: interferencia al nivel de gas indicado. Por ejemplo, 50 vol% de helio normalmente disminuye las lecturas de CO_2 en un 6 %. Esto significa que, si se realiza la medición en una mezcla que contiene 5,0 vol% de CO_2 y 50 vol% de helio, la concentración de CO_2 medida normalmente será (1-0,06)*5,0 vol% = 4,7 vol% de CO_2 .

Nota 4: de acuerdo con la norma EN ISO 21647.

Nota 5: además de la norma EN ISO 21647.

A.18 Red inalámbrica

De conformidad con la normativa	IEEE802.11b/g, R&TTE Directiva (99/5/EEC)
y la directiva	
Intervalo de frecuencias	2,412 GHz ~2,462 GHz (América)
	2,412 GHz ~2,484 GHz (Japón)
	2,412 GHz ~2,472 GHz (ETSI)
Segmento de frecuencia de	Ch1 ~ 11 (América)
funcionamiento	Ch1 ~ 14 (Japón)
	Ch1 ~ 13 (ETSI)

B Información de CEM

- Guía y declaración del fabricante

B.1 Emisiones electromagnéticas: para todos los EQUIPOS y SISTEMAS

Guía y declaración del fabricante: emisión electromagnética						
El monitor está diseñado para utilizarse en el entorno electromagnético especificado a continuación. El cliente o usuario del monitor debe garantizar que se utiliza en dicho entorno.						
Prueba de emisiones	Conformidad	Entorno electromagnético: guía				
Emisiones de RF CISPR 11	Grupo 1	El monitor utiliza energía de RF sólo para su funcionamiento interno. Por tanto, las emisiones de RF son mínimas y no existe posibilidad alguna de que produzcan interferencias con equipos electrónicos cercanos a él.				
Emisión de RF CISPR 11	Clase A	El monitor puede utilizarse en cualquier entorno que no sea el entorno doméstico y otros sitios conectados directamente a las redes eléctricas				
Emisiones armónicas IEC/EN 61000-3-2	Clase A	públicas de baja tensión que proporcionan energía a los edificios empleados para fines domésticos.				
Fluctuaciones de tensión/emisiones intermitentes IEC/EN 61000-3-3	Cumple					

B.2 Inmunidad electromagnética: para todos los EQUIPOS y SISTEMAS

Guía y declaración del fabricante: inmunidad electromagnética						
El monitor está diseñado para utilizarse en el entorno electromagnético especificado a continuación El cliente o usuario del monitor debe garantizar que se utiliza en diebe entorno.						
		leve guruntizar que se at				
Prueba de	Nivel de prueba	Nivel de	Entorno			
inmunidad	IEC/EN 60601	conformidad	electromagnético: guía			
Descarga	±Contacto de 6 kV	±Contacto de 6 kV	Los suelos deben ser de			
electrostática (ESD)	±8 kV en aire	±8 kV en aire	madera, hormigón o cerámica. Si estuvieran			
IEC/EN 61000-4-2			cubiertos de material sintético, la humedad			
			menos, del 30%.			
Corrientes	$\pm 2 \text{ kV}$ en redes	$\pm 2kV$ en redes	La calidad de la red			
eléctricas	eléctricas	eléctricas	eléctrica debe equivaler			
transitorias rápidas y ráfagas	±1 kV en señales de entrada/salida	±1 kV en señales de entrada/salida	a la de un hospital o local comercial típico.			
IEC/EN 61000-4-4						
Sobretensión	±1 kV en línea a línea	±1 kV en línea a	La calidad de la red			
IEC/EN 61000-4-5	+2 kV en línea a tierra	línea	eléctrica debe equivaler			
		±2 kV en línea a	a la de un hospital o			
		tierra	local comercial tipico.			
Frecuencia de red	3A/m	3A/m	Los niveles de los			
(50/60Hz)			campos magnéticos de			
Campo magnético			trecuencia de red deben			
			ser los habituales de			
IEC/EN 61000-4-8			local comercial típico			

Manual de usuario del monitor de paciente

Información de EMC

Caídas de tensión, interrupciones de cortocircuito y variaciones de tensión en las líneas de entrada de la fuente de alimentación IEC/EN 61000-4-11	<5% U_T (>95% de caída en U_T) en 0,5 ciclos 40% U_T (60% de caída en U_T) en 5 ciclos 70% U_T (30% de caída en U_T) en 25 ciclos	<5% U_T (>95% de caída en U_T) en 0,5 ciclos 40% U_T (60% de caída en U_T) en 5 ciclos 70% U_T (30% de caída en U_T) en 25 ciclos	La calidad de la red eléctrica debe equivaler a la de un hospital o local comercial típico. Si el usuario necesita utilizar el Monitor de paciente de forma continua durante interrupciones de la red eléctrica, se recomienda utilizar el Monitor de paciente con una fuente de alimentación ininterrumpida o una batería.
	<5% U _T (>95% de caída en U _T) en 5 s	en 25 ciclos <5% U_T (>95% de caída en U_T) en 5 s	

NOTA U_T es la tensión de la red de CA anterior a la aplicación del nivel de prueba.

B.3 Inmunidad electromagnética: para EQUIPOS y SISTEMAS que no son de SOPORTE VITAL

Guía y declaración del fabricante: inmunidad electromagnética

El Monitor de paciente está diseñado para utilizarse en el entorno electromagnético especificado a continuación. El cliente o usuario del Monitor de paciente debe garantizar que se utiliza en dicho entorno.

Prueba de inmunidad	Nivel de prueba IEC/EN 60601	Nivel de conformidad	Entorno electromagnético: guía
------------------------	---------------------------------------	-------------------------	--------------------------------

			No utilice dispositivos de comunicaciones de RF móviles y portátiles a una distancia inferior de la recomendada respecto a los componentes del Monitor de paciente, incluidos los cables. Esta distancia de separación se calcula a partir de la ecuación aplicable a la frecuencia del transmisor.
			Distancia de separación recomendada
RF conducida	3 V _{rms}	3 V _{rms}	$d = \left[\frac{3.5}{V_1}\right]\sqrt{P}$
IEC/EN 61000-4-6	150 kHz a 80 MHz		$d = \left[\frac{3.5}{E_1}\right] \sqrt{P} 80 \text{ MHz a } 800 \text{ MHz}$
RF radiada			$d = \left[\frac{7}{F}\right]\sqrt{P}$ 800 MHz a 2,5 GHz
IEC/EN 61000-4-3	3 V/m	3 V/m	
	80 MHz a 2.5 GHz		Donde P equivale a la potencia de salida del transmisor en vatios (W), de acuerdo con el
	2,0 0112		fabricante del transmisor, y d equivale a la distancia de separación recomendada en metros (m).
			Las intensidades del campo derivadas de transmisores de RF fijos, tal y como ha determinado una inspección de la ubicación electromagnética, ^a debe ser inferior al nivel de conformidad de cada intervalo de frecuencia b ⁻
			Pueden producirse interferencias cerca de los equipos marcados con el símbolo:
			(()))

NOTA 1 A 80 MHz y 800 MHz, se aplica el intervalo de frecuencia más elevado.

NOTA 2 Estas directrices no se aplican en todos los casos. La absorción y la reflexión de estructuras, objetos e individuos pueden afectar a la propagación electromagnética.

^a Las intensidades del campo derivadas de transmisores fijos, como las estaciones base de radiotelefonía (móviles/inalámbricas) y de radio móvil terrestre, de radio aficionados y de emisiones de radiodifusión de AM y FM y de radiodifusión televisiva, no pueden predecirse teóricamente con precisión. Para evaluar el entorno electromagnético derivado de los transmisores de RF fijos, debe realizarse una inspección de la ubicación electromagnética. Si la intensidad de campo medida en la ubicación en la que se utiliza el

Monitor del paciente supera el nivel de conformidad de RF aplicable anterior, debe observarse el Monitor del paciente para comprobar que funciona correctamente. Si se detecta un rendimiento anormal, puede que se requieran medidas adicionales, como volver a orientar o colocar el Monitor del paciente.

^b Por encima del intervalo de frecuencia de 150kHz a 80MHz, las intensidades de campo deberían ser inferiores a 3V/m.

B.4 Distancias de separación recomendadas

Distancias de separación recomendadas entre

los equipos de comunicaciones de RF portátiles y móviles y el monitor

El monitor está concebido para utilizarse en un entorno electromagnético en el que se controlen las interferencias de RF radiadas. El cliente o el usuario del monitor puede ayudar a evitar las interferencias electromagnéticas; para ello, debe mantener una distancia mínima entre los equipos de comunicaciones de RF móviles y portátiles (transmisores) y el monitor, como se recomienda a continuación de acuerdo con la potencia de salida máxima de los equipos de comunicaciones.

Alimentación de	Distancia de separación de acuerdo con la frecuencia del transmisor				
salida maxima indicada del	(m) 150 kHz a 80 MHz 80 MHz a 800 MHz a 800 MHz a 2,5 GI				
transmisor					
(W)	$d = \left[\frac{3.5}{V_1}\right]\sqrt{P}$	$d = \left[\frac{3.5}{E_1}\right]\sqrt{P}$	$d = \left[\frac{7}{E_1}\right]\sqrt{P}$		
0,01	0,12	0,12	0,23		
0,1	0,36	0,37	0,74		
1	1,16	1,17	2,33		
10	3,69	3,69	7,38		
100	11,67	11,67	23,33		

Para transmisores con potencia nominal máxima no incluidos anteriormente, la distancia de separación recomendada d en metros (m) puede estimarse usando la ecuación aplicable a la frecuencia del transmisor, donde P es la potencia máxima nominal del transmisor en vatios (W) de acuerdo con el fabricante del transmisor.

NOTA 1 A 80 MHz y 800 MHz, se aplica la distancia de separación del intervalo de frecuencia superior.

NOTA 2 Estas directrices no se aplican en todos los casos. La absorción y la reflexión de estructuras, objetos e individuos pueden afectar a la propagación electromagnética.

C Configuración por defecto

Este apéndice documenta las configuraciones predeterminadas más importantes de su monitor tal como se entrega de fábrica.

Nota: Si ha solicitado que se configure previamente el monitor de acuerdo con sus requisitos, la configuración en la entrega será diferente a las aquí enumeradas.

C.1 Configuración predeterminada de información del paciente

Configuración de información del paciente

Tipo de paciente	Adulto
Marcapasos	Dessactivado

C.2 Configuración de alarma predeterminada

Configuración de alarma	
Tiempo de pausa	120s
Silencio	Activado
Alarma de sensor apagado	Activado
Bloq alarma	Abrir

C.3 Configuración de ECG predeterminada

ECG Configuración	ADU	PED	NEO
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Límite superior de alarma	120	160	200
Límite inferior de alarma	50	75	100
Marcapasos	Desactivado		
Tipo de derivación	5 derivaciones		
Pantalla	Normal		
Filtro	Monitor		
Deriv. intelig.	Desactivado		
Desactivadoc.			
Volumen del corazón	2		
Análisis ST	ADU	PED	NEO
Análisis ST	Desactivado		·

Interrupción de Alarma	Desactivado				
Nivel de alarma	Medio				
Impresión de alarma	Desactivado	Desactivado			
Límite superior de alarma (ST-X)	0,2				
Límite inferior de alarma (ST-X)	-0,2				
X significa I, II, III, aVR, aV	/L, aVF, V, V1, V	2, V3, V4, V5 o V6.			
Análisis ARRITMIA					
Análisis ARRITMIA	Desactivado				
Nivel de alarma para PVCs	Medio				
Int Alarma para PVCs	Desactivado				
Impresión de alarma para PVCs	Desactivado				
Conf Alarm ARR	Interr Alarma	Nivel de alarma	Impresión de alarma		
SÍSTOLE	Activado	Alto	Desactivado		
VFIB/VTAC	Activado	Alto	Desactivado		
R EN T	Activado	Medio	Desactivado		
VT > 2	Activado	Medio	Desactivado		
PARES	Activado	Medio	Desactivado		
PVC	Activado	Medio	Desactivado		
RITMO BIGEMI	Activado	Medio	Desactivado		
RITMO TRIGEM	Activado	Medio	Desactivado		
TAQUICARDIA	Activado	Medio	Desactivado		
BRADICARDIA	Activado	Medio	Desactivado		
LATIDOS FALT	Activado	Medio	Desactivado		
IRR	Activado	Medio	Desactivado		
PNC	Activado	Medio	Desactivado		
PNP	Activado	Medio	Desactivado		
VBRADI	Activado	Medio	Desactivado		
VENT	Activado	Medio	Desactivado		

C.4 RESP

Configuración para RESP	ADU	PED	NEO	
Interrupción de Alarma	Activado			
Impresión de alarma	Desactivado			
Nivel de alarma	Medio			
Límite superior de alarma	30	30	100	
Límite inferior de alarma	8	8	30	
Tiempo de apnea	20s			
Tipo de cálculo	Auto			
Tipo de resp	II			
Barrido	12,5mm/s			
Amplitud	1			

C.5 SpO₂

Configuración para SpO ₂	ADU	PED	NEO
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Límite superior de alarma	100	100	95
Límite inferior de alarma	90	90	88
Tono de vibración	Desactivado		
Barrido	12,5mm/s		

C.6 PR

Configuración para PR	ADU	PED	NEO
Fuente PR	SpO ₂		
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Límite superior de alarma	120	160	200
Límite inferior de alarma	50	75	100
Volumen del pulso	3		
Origen de alarma	Auto		

C.7 NIBP

Configuración para NIBP	ADU	PED	NEO		
Interrupción de Alarma	Activado	I			
Impresión de alarma	Desactivad	Desactivado			
Nivel de alarma	Medio	Medio			
Límite superior de alarma (SIS)	160	120	90		
Límite inferior de alarma (SIS)	90	70	40		
Límite superior de alarma (med)	110	90	70		
Límite inferior de alarma (med)	60	50	30		
Límite superior de alarma (dia)	90	70	60		
Límite inferior de alarma (dia)	50	40	20		
Módulo EDAN	1	I	1		
Valor de inflación	160	140	100		
Módulo M3600	1	l	1		
Valor de inflación	180	180	120		
Unidad	mmHg	mmHg			
Intervalo	Manual				

C.8 TEMP

Configuración para TEMP	ADU	PED	NEO
Interrupción de Alarma	Activado	·	
Impresión de alarma	Desactivad	0	
Nivel de alarma	Medio		
Límite superior de alarma (T1)	superior de alarma (T1) 39,0 39,0 39,0		39,0
Límite inferior de alarma (T1) 36,0		36,0	36,0
Límite superior de alarma (T2)	39,0	39,0	39,0
Límite inferior de alarma (T2)	36,0	36,0	36,0
Límite superior de alarma (TD)2,02,0		2,0	2,0
Unidad	°C		

C.9 Quick TEMP

Configuración para Quick TEMP	ADU	PED	NEO
Interrucpión de Alarma	Activado		

Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Límite superior de alarma (T1)	39,0	39,0	/
Límite inferior de alarma (T1)	36,0	36,0	/
Unidad	°C		

C.10 IBP

Configuración para IBP	ADU	PED	NEO
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Unidad	mmHg		
Filtro	12,5Hz		
	SIS, DIA, PAM	SIS, DIA, PAM	SIS, DIA, PAM
Límite superior de alarma (ART, P1, P2)	160, 90, 110	160, 90, 110	160, 90, 110
Límite inferior de alarma (ART, P1, P2)	90, 50, 70	90, 50, 70	90, 50, 70
Límite superior de alarma (AP)	35, 16, 20	35, 16, 20	35, 16, 20
Límite inferior de alarma (AP)	10, 0, 0	10, 0, 0	10, 0, 0
	PAM	PAM	PAM
Límite superior de alarma (PVC, PAD, PAI, PIC)	10	10	10
Límite inferior de alarma (PVC, PAD, PAI, PIC)	0	0	0

C.11 CO₂

Configuración para CO ₂	ADU	PED	NEO
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Modo de trabajo	En espera		
Unidad	mmHg		
Tiempo de apnea	20s		

Manual de usuario del monitor de paciente

Compensación de O ₂	16%		
Agente Anest	0%		
Límite superior de alarma (EtCO ₂)	50	50	45
Límite inferior de alarma (EtCO ₂)	15	20	30
Límite superior de alarma (FiCO ₂)	4	4	4
Límite superior de alarma (AWRR)	30	30	100
Límite inferior de alarma (AWRR)	8	8	30
Barrido	12,5mm/s		
Amplitud	Bajo		

C.12 C.O.

CO Configuración	ADU	PED	NEO
Int alarma	Act		
Impr alarma	Desac		
Nivel alarm	Medio		
Límite superior de alarma (TB)	43,0	43,0	43,0
Límite inferior de alarma (TB)	23,0	23,0	23,0
Fuente de temperatura de la solución inyectada	Auto		
Unidad de temperatura	°C		
Intervalo	30		
Constante	0,542		

C.13 AG

Configuración para AG	ADU	PED	NEO
Interrupción de Alarma	Activado		
Impresión de alarma	Desactivado		
Nivel de alarma	Medio		
Modo de trabajo	Medida		
Tiempo de apnea	20s		
Unidad	%		
Compensación de O ₂	DESACTIVA	ADO	

Agente Anest	HAL,		
Límite superior de alarma (EtAA)	8,0	8,0	8,0
Límite inferior de alarma (EtAA)	0,0	0,0	0,0
Límite superior de alarma (FiAA)	6,0	6,0	6,0
Límite inferior de alarma (FiAA)	0,0	0,0	0,0
Límite superior de alarma (EtN ₂ O)	55	55	55
Límite inferior de alarma (EtN ₂ O)	0	0	0
Límite superior de alarma (FiN ₂ O)	53	53	53
Límite inferior de alarma (FiN ₂ O)	0	0	0
Límite superior de alarma (EtO ₂)	90.0	90.0	90.0
Límite inferior de alarma (EtO ₂)	18,0	18,0	18,0
Límite superior de alarma (FiO ₂)	88,0	88,0	88,0
Límite inferior de alarma (FiO ₂)	18,0	18,0	18,0
Barrido	12,5mm/s		
Amplitud	2		

D Abreviaturas

Abreviatura	Nombre completo/descripción en español
СА	Corriente alterna
Adu	Adultos
AG	Gas de anestesia
Art	Arterial
aVF	Derivación aumentada del pie izquierdo
aVL	Derivación aumentada del brazo izquierdo
aVR	Derivación aumentada del brazo derecho
awRR	Frecuencia respiratoria de la vía aérea
BP	Presión sanguínea
BTPS	Presión y temperatura corporal saturadas
C.I.	Índice cardiaco
C.O.	Gasto cardiaco o Volumen Minuto
CISPR	Comité Especial Internacional sobre Radiointerferencias
CMS	Sistema de monitorización central
CO ₂	Dióxido de carbono
СОНЬ	Carboxihemoglobina
CVP/PVC	Presión venosa central
DC	Corriente continua
Des	Desflurano
Dia	Diastólica
ECG	Electrocardiograma
EEC	Comunidad Económica Europea
СЕМ	Compatibilidad electromagnética
EMI	Interferencia electromagnética
Enf	Enflurano
ESU	Unidad de Electrocirugía
Et	Final de la espiración
EtCO ₂	Dióxido de carbono al final de la espiración
EtN ₂ O	Óxido nitroso al final de la espiración

Eto	Óxido de etileno
EtO ₂	Oxígeno al final de la espiración
FCC	Comisión Federal de Comunicaciones
FDA	Administración de alimentos y fármacos de EE. UU.
Fi	Fracción inspirada
FiCO ₂	Fracción de dióxido de carbono inspirado
FiN ₂ O	Fracción inspirada de óxido nitroso
FiO ₂	Fracción inspirada de oxígeno
Hal	Halotano
Hb	Hemoglobina
Hb-CO	Carboxihemoglobina
HR	Frecuencia cardiaca
IBP	Presión sanguínea invasiva
ICP	Presión intracraniana
ICU	Unidad de cuidados intensivos
ID	Identificación
IEC	Comisión Electrotécnica Internacional
IEEE	Instituto de Ingenieros Eléctricos y Electrónicos
Iso	Isoflurano
LA	Brazo izquierdo
LAP/PAI	Presión auricular izquierda
LCD	Pantalla de cristal líquido
LED	Diodo de emisión de luz
LL	Pierna izquierda
РАМ	Presión arterial media
MDD	Directiva para equipos médicos
MetHb	Metahemoglobina
MRI	Imagen por resonancia magnética
N/A	No corresponde
N ₂	Nitrógeno
N ₂ O	Óxido nitroso
Neo	Neonato/Recién nacido

NIBP	Presión sanguínea no invasiva
O ₂	Oxígeno
oxyCRG	Oxi-Cardiorrespirograma
РА	Arteria pulmonar
PAWP	Presión de enclavamiento de la arteria pulmonar
Ped	Pediátrico/Niño
Pleth	Pletismograma
PR	Frecuencia del pulso
PVC	Contracción ventricular prematura
R	Derecho
RA	Brazo derecho
RAP	Presión auricular derecha
Resp	Respiración
RHb	Hemoglobina reducida
RL	Pierna derecha
RR	Frecuencia respiratoria
Sev	Sevoflurano
SIS	Presión sistólica
ТВ	Temperatura sanguínea
TD	Diferencia de temperatura
ТЕМР	Temperatura
USB	Bus serie universal

P/N: 01.54.455584-10

Representante autorizado en la comunidad Europra: Shanghal International Holding Corp. GmbH (Europe) Dirección: Eiffestrasse 80, D-20537 Hamburg Germany Teléfono: +49-40-2513175 Fax: +49-40-255726 E-mail: antonjin@yahoo.com.cn

Fabricante: EDAN INSTRUMENTS, INC. Dirección: 3/F-B. Nanshan Medical Equipment Park. Nanhai Rd 1019#,Shekou, Nanshan Shenzhen, 518067 PR. CHINA Email: info@edan.com.cn Teléfono: +86-755-2689 8326 Fax: +86-755-2689 8330